<< Chapter < Page Chapter >> Page >

Two particles A and B are connected by a rigid rod AB. The rod slides along perpendicular rails as shown here. The velocity of A moving down is 10 m/s. What is the velocity of B when angle θ = 60° ?

Motion of a leaning rod

One end of the ros is moving with a speed 10 m/s in vertically downward direction.

Solution : The velocity of B is not an independent velocity. It is tied to the velocity of the particle “A” as two particles are connected through a rigid rod. The relationship between two velocities is governed by the inter-particles separation, which is equal to the length of rod.

The length of the rod, in turn, is linked to the positions of particles “A” and “B” . From figure,

x = L 2 y 2

Differentiatiting, with respect to time :

v x = d x d t = 2 y 2 L 2 y 2 X d y d t = y v y L 2 y 2 = v y tan θ

Considering magnitude only,

v x = v y tan θ = 10 tan 60 0 = 10 3 m s

Got questions? Get instant answers now!

Problem : The position vector of a particle is :

r = a cos ω t i + a sin ω t j

where “a” is a constant. Show that velocity vector is perpendicular to position vector.

Solution : In order to prove as required, we shall use the fact that scalar (dot) product of two perpendicular vectors is zero. Now, we need to find the expression of velocity to evaluate the dot product as intended. We can obtain the same by differentiating the expression of position vector with respect to time as :

v = d r d t = - a ω sin ω t i + a ω cos ω t j

To check whether velocity is perpendicular to the position vector, we evalaute the scalar product of r and v , which should be equal to zero.

r . v = 0

In this case,

r . v = ( a cos ω t i + a sin ω t j ) . ( - a ω sin ω t i + a ω cos ω t j ) - a 2 ω sin ω t cos ω t + a 2 ω sin ω t cos ω t = 0

This means that the angle between position vector and velocity are at right angle to each other. Hence, velocity is perpendicular to position vector. It is pertinent to mention here that this result can also be inferred from the plot of motion. An inspection of position vector reveals that it represents uniform circular motion as shown in the figure here.

Circular motion

The particle describes a circular path.

The position vector is always directed radially, whereas velocity vector is always tangential to the circular path. These two vectors are, therefore, perpendicular to each other.

Got questions? Get instant answers now!

Problem : A car of width 2 m is approaching a crossing at a velocity of 8 m/s. A pedestrian at a distance of 4 m wishes to cross the road safely. What should be the minimum speed of pedestrian so that he/she crosses the road safely?

Solution : We draw the figure to illustrate the situation. Here, car travels the linear distance (AB + CD) along the direction in which it moves, by which time the pedestrian travels the linear distance BD. Let pedestrian travels at a speed “v” along BD, which makes an angle “θ” with the direction of car.

Motion of a car and a pedestrian

The pedestrian crosses the road at angle with direction of car.

We must understand here that there may be number of combination of angle and speed for which pedestrian will be able to safely cross before car reaches. However, we are required to find the minimum speed. This speed should, then, correspond to a particular value of θ.

We can also observe that pedestrian should move obliquely. In doing so he/she gains extra time to cross the road.

From triangle BCD,

tan ( 90 - θ ) = cot θ = CD BC = CD 2 CD = 2 cot θ

Also,

cos ( 90 - θ ) = sin θ = BC BD = 2 BD BD = 2 sin θ

According to the condition given in the question, the time taken by car and pedestrian should be equal for the situation outlined above :

t = 4 + 2 cot θ 8 = 2 sin θ v

v = 8 2 sin θ + cos θ

For minimum value of speed, d v d θ = 0 ,

d v d θ = - 8 x ( 2 cos θ - sin θ ) ( 2 sin θ + cos θ ) 2 = 0 ( 2 cos θ - sin θ ) = 0 tan θ = 2

In order to evaluate the expression of velocity with trigonometric ratios, we take the help of right angle triangle as shown in the figure, which is consistent with the above result.

Trigonometric ratio

The tangent of angle is equal to 2.

From the triangle, defining angle “θ”, we have :

sin θ = 2 5

and

cos θ = 1 5

The minimum velocity is :

v = 8 2 x 2 5 + 1 5 = 8 5 = 3.57 m / s

Got questions? Get instant answers now!

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask