<< Chapter < Page Chapter >> Page >

Test prep for ap courses

A piece of wood can be carved by spinning it on a motorized lathe and holding a sharp chisel to the edge of the wood as it spins. How does the angular velocity of a piece of wood with a radius of 0.2 m spinning on a lathe change when a chisel is held to the wood's edge with a force of 50 N?

  1. It increases by 0.1 N•m multiplied by the moment of inertia of the wood.
  2. It decreases by 0.1 N•m divided by the moment of inertia of the wood-and-lathe system.
  3. It decreases by 0.1 N•m multiplied by the moment of inertia of the wood.
  4. It decreases by 0.1 m/s 2 .

(b)

Got questions? Get instant answers now!

A Ferris wheel is loaded with people in the chairs at the following positions: 4 o'clock, 1 o'clock, 9 o'clock, and 6 o'clock. As the wheel begins to turn, what forces are acting on the system? How will each force affect the angular velocity and angular momentum?

Got questions? Get instant answers now!

A lever is placed on a fulcrum. A rock is placed on the left end of the lever and a downward (clockwise) force is applied to the right end of the lever. What measurements would be most effective to help you determine the angular momentum of the system? (Assume the lever itself has negligible mass.)

  1. the angular velocity and mass of the rock
  2. the angular velocity and mass of the rock, and the radius of the lever
  3. the velocity of the force, the radius of the lever, and the mass of the rock
  4. the mass of the rock, the length of the lever on both sides of the fulcrum, and the force applied on the right side of the lever

(d)

Got questions? Get instant answers now!

You can use the following setup to determine angular acceleration and angular momentum: A lever is placed on a fulcrum. A rock is placed on the left end of the lever and a known downward (clockwise) force is applied to the right end of the lever. What calculations would you perform? How would you account for gravity in your calculations?

Got questions? Get instant answers now!

Consider two sizes of disk, both of mass M . One size of disk has radius R ; the other has radius 2 R . System A consists of two of the larger disks rigidly connected to each other with a common axis of rotation. System B consists of one of the larger disks and a number of the smaller disks rigidly connected with a common axis of rotation. If the moment of inertia for system A equals the moment of inertia for system B, how many of the smaller disks are in system B?

  1. 1
  2. 2
  3. 3
  4. 4

(d)

You are given a thin rod of length 1.0 m and mass 2.0 kg, a small lead weight of 0.50 kg, and a not-so-small lead weight of 1.0 kg. The rod has three holes, one in each end and one through the middle, which may either hold a pivot point or one of the small lead weights.

Got questions? Get instant answers now!

How do you arrange these objects so that the resulting system has the maximum possible moment of inertia? What is that moment of inertia?

Got questions? Get instant answers now!

Section summary

  • The farther the force is applied from the pivot, the greater is the angular acceleration; angular acceleration is inversely proportional to mass.
  • If we exert a force F size 12{F} {} on a point mass m size 12{m} {} that is at a distance r size 12{r} {} from a pivot point and because the force is perpendicular to r size 12{r} {} , an acceleration a = F/m size 12{F} {} is obtained in the direction of F size 12{F} {} . We can rearrange this equation such that
    F = ma , size 12{F} {","}

    and then look for ways to relate this expression to expressions for rotational quantities. We note that a = rα size 12{F} {} , and we substitute this expression into F=ma size 12{F} {} , yielding

    F=mrα size 12{F} {}
  • Torque is the turning effectiveness of a force. In this case, because F size 12{F} {} is perpendicular to r size 12{r} {} , torque is simply τ = rF size 12{F} {} . If we multiply both sides of the equation above by r size 12{r} {} , we get torque on the left-hand side. That is,
    rF = mr 2 α size 12{ ital "rF"= ital "mr" rSup { size 8{2} } α} {}

    or

    τ = mr 2 α . size 12{τ= ital "mr" rSup { size 8{2} } α "." } {}
  • The moment of inertia I size 12{I} {} of an object is the sum of MR 2 size 12{ ital "MR" rSup { size 8{2} } } {} for all the point masses of which it is composed. That is,
    I = mr 2 . size 12{I= sum ital "mr" rSup { size 8{2} } "." } {}
  • The general relationship among torque, moment of inertia, and angular acceleration is
    τ = size 12{τ=Iα} {}

    or

    α = net τ I size 12{α= { { ital "net"`τ} over {I} } cdot } {}
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask