<< Chapter < Page Chapter >> Page >
Two metal plates are positioned vertically facing each other. The plates are the conducting parts of a capacitor. The plate on the left-hand side is connected to the positive terminal of a battery, and the plate on the right-hand side is connected to the negative terminal of the battery. There is an electric field between the two plates of the capacitor. The electric field lines emanate from the positively charged plate and end on the negatively charged plate. The electric field E is proportional to the charge Q.
Electric field lines in this parallel plate capacitor, as always, start on positive charges and end on negative charges. Since the electric field strength is proportional to the density of field lines, it is also proportional to the amount of charge on the capacitor.

The field is proportional to the charge:

E Q , size 12{E prop Q} {}

where the symbol size 12{prop} {} means “proportional to.” From the discussion in Electric Potential in a Uniform Electric Field , we know that the voltage across parallel plates is V = Ed size 12{V= ital "Ed"} {} . Thus,

V E . size 12{V prop E} {}

It follows, then, that V ∝ Q size 12{Va`Q} {} , and conversely,

Q V . size 12{Q prop V} {}

This is true in general: The greater the voltage applied to any capacitor, the greater the charge stored in it.

Different capacitors will store different amounts of charge for the same applied voltage, depending on their physical characteristics. We define their capacitance     C size 12{C} {} to be such that the charge Q size 12{C} {} stored in a capacitor is proportional to C size 12{C} {} . The charge stored in a capacitor is given by

Q = CV . size 12{Q= ital "CV"} {}

This equation expresses the two major factors affecting the amount of charge stored. Those factors are the physical characteristics of the capacitor, C size 12{C} {} , and the voltage, V . Rearranging the equation, we see that capacitance C size 12{C} {} is the amount of charge stored per volt, or

C = Q V . size 12{C=Q/V} {}

Capacitance

Capacitance C size 12{C} {} is the amount of charge stored per volt, or

C = Q V . size 12{C=Q/V} {}

The unit of capacitance is the farad (F), named for Michael Faraday (1791–1867), an English scientist who contributed to the fields of electromagnetism and electrochemistry. Since capacitance is charge per unit voltage, we see that a farad is a coulomb per volt, or

1 F = 1 C 1 V . size 12{F= { {"1 C"} over {"1 V"} } } {}

A 1-farad capacitor would be able to store 1 coulomb (a very large amount of charge) with the application of only 1 volt. One farad is, thus, a very large capacitance. Typical capacitors range from fractions of a picofarad 1 pF = 10 –12 F size 12{ left (1" pF"="10" rSup { size 8{-"12"} } " F" right )} {} to millifarads 1 mF = 10 –3 F size 12{ left (1" mF"="10" rSup { size 8{-3} } " F" right )} {} .

[link] shows some common capacitors. Capacitors are primarily made of ceramic, glass, or plastic, depending upon purpose and size. Insulating materials, called dielectrics, are commonly used in their construction, as discussed below.

There are various types of capacitors with varying shapes and color. Some are cylindrical in shape, some circular in shape, some rectangular in shape, with two strands of wire coming out of each.
Some typical capacitors. Size and value of capacitance are not necessarily related. (credit: Windell Oskay)

Parallel plate capacitor

The parallel plate capacitor shown in [link] has two identical conducting plates, each having a surface area A size 12{A} {} , separated by a distance d size 12{d} {} (with no material between the plates). When a voltage V size 12{V} {} is applied to the capacitor, it stores a charge Q size 12{Q} {} , as shown. We can see how its capacitance depends on A size 12{A} {} and d size 12{d} {} by considering the characteristics of the Coulomb force. We know that like charges repel, unlike charges attract, and the force between charges decreases with distance. So it seems quite reasonable that the bigger the plates are, the more charge they can store—because the charges can spread out more. Thus C size 12{C} {} should be greater for larger A size 12{A} {} . Similarly, the closer the plates are together, the greater the attraction of the opposite charges on them. So C size 12{C} {} should be greater for smaller d size 12{d} {} .

Two parallel plates are placed facing each other. The area of each plate is A, and the distance between the plates is d. The plate on the left is connected to the positive terminal of the battery, and the plate on the right is connected to the negative terminal of the battery.
Parallel plate capacitor with plates separated by a distance d size 12{d} {} . Each plate has an area A size 12{A} {} .
Practice Key Terms 6

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask