<< Chapter < Page | Chapter >> Page > |
By the end of this section, you will be able to:
Newton’s second law of motion is closely related to Newton’s first law of motion. It mathematically states the cause and effect relationship between force and changes in motion. Newton’s second law of motion is more quantitative and is used extensively to calculate what happens in situations involving a force. Before we can write down Newton’s second law as a simple equation giving the exact relationship of force, mass, and acceleration, we need to sharpen some ideas that have already been mentioned.
First, what do we mean by a change in motion? The answer is that a change in motion is equivalent to a change in velocity. A change in velocity means, by definition, that there is an acceleration . Newton’s first law says that a net external force causes a change in motion; thus, we see that a net external force causes acceleration .
Another question immediately arises. What do we mean by an external force? An intuitive notion of external is correct—an external force acts from outside the system of interest. For example, in [link] (a) the system of interest is the wagon plus the child in it. The two forces exerted by the other children are external forces. An internal force acts between elements of the system. Again looking at [link] (a), the force the child in the wagon exerts to hang onto the wagon is an internal force between elements of the system of interest. Only external forces affect the motion of a system, according to Newton’s first law. (The internal forces actually cancel, as we shall see in the next section.) You must define the boundaries of the system before you can determine which forces are external . Sometimes the system is obvious, whereas other times identifying the boundaries of a system is more subtle. The concept of a system is fundamental to many areas of physics, as is the correct application of Newton’s laws. This concept will be revisited many times on our journey through physics.
When we describe the acceleration of a system, we are modeling the system as a single point which contains all of the mass of that system. The point we choose for this is the point about which the system’s mass is evenly distributed. For example, in a rigid object, this center of mass is the point where the object will stay balanced even if only supported at this point. For a sphere or disk made of homogenous material, this point is of course at the center. Similarly, for a rod made of homogenous material, the center of mass will be at the midpoint.
For the rider in the wagon in Figure 4.5 , the center of mass is probably between the rider’s hips. Due to internal forces, the rider’s hand or hair may accelerate slightly differently, but it is the acceleration of the system’s center of mass that interests us. This is true whether the system is a vehicle carrying passengers, a bowl of grapes, or a planet. When we draw a free-body diagram of a system, we represent the system’s center of mass with a single point and use vectors to indicate the forces exerted on that center of mass. (See Figure 4.5 .)
Notification Switch
Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?