Calculate the total force (magnitude and direction) exerted on a test charge from more than one charge.
Describe an electric field diagram of a positive point charge and of a negative point charge with twice the magnitude of the positive charge.
Draw the electric field lines between two points of the same charge and between two points of opposite charge.
The information presented in this section supports the following AP® learning objectives and science practices:
2.C.1.2 The student is able to calculate any one of the variables – electric force, electric charge, and electric field – at a point given the values and sign or direction of the other two quantities.
2.C.2.1 The student is able to qualitatively and semiquantitatively apply the vector relationship between the electric field and the net electric charge creating that field.
2.C.4.1 The student is able to distinguish the characteristics that differ between monopole fields (gravitational field of spherical mass and electrical field due to single point charge) and dipole fields (electric dipole field and magnetic field) and make claims about the spatial behavior of the fields using qualitative or semiquantitative arguments based on vector addition of fields due to each point source, including identifying the locations and signs of sources from a vector diagram of the field.
(S.P. 2.2, 6.4, 7.2)
2.C.4.2 The student is able to apply mathematical routines to determine the magnitude and direction of the electric field at specified points in the vicinity of a small set (2-4) of point charges, and express the results in terms of magnitude and direction of the field in a visual representation by drawing field vectors of appropriate length and direction at the specified points.
(S.P. 1.4, 2.2)
3.C.2.3 The student is able to use mathematics to describe the electric force that results from the interaction of several separated point charges (generally 2-4 point charges, though more are permitted in situations of high symmetry).
(S.P. 2.2)
Drawings using lines to represent
electric fields around charged objects are very useful in visualizing field strength and direction. Since the electric field has both magnitude and direction, it is a vector. Like all
vectors , the electric field can be represented by an arrow that has length proportional to its magnitude and that points in the correct direction. (We have used arrows extensively to represent force vectors, for example.)
[link] shows two pictorial representations of the same electric field created by a positive point charge
.
[link] (b) shows the standard representation using continuous lines.
[link] (b) shows numerous individual arrows with each arrow representing the force on a test charge
. Field lines are essentially a map of infinitesimal force vectors.
Questions & Answers
A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?