<< Chapter < Page Chapter >> Page >

It can be shown that for a parallel plate capacitor there are only two factors ( A size 12{A} {} and d size 12{d} {} ) that affect its capacitance C size 12{C} {} . The capacitance of a parallel plate capacitor in equation form is given by

C = ε 0 A d . size 12{C=e rSub { size 8{0} } A/d} {}

Capacitance of a parallel plate capacitor

C = ε 0 A d size 12{C=e rSub { size 8{0} } A/d} {}

A size 12{A} {} is the area of one plate in square meters, and d is the distance between the plates in meters. The constant ε 0 is the permittivity of free space; its numerical value in SI units is ε 0 = 8.85 × 10 12 F/m . The units of F/m are equivalent to C 2 /N · m 2 size 12{ left (C rSup { size 8{2} } "/N" cdot m rSup { size 8{2} } right )} {} . The small numerical value of ε 0 size 12{e rSub { size 8{0} } } {} is related to the large size of the farad. A parallel plate capacitor must have a large area to have a capacitance approaching a farad. (Note that the above equation is valid when the parallel plates are separated by air or free space. When another material is placed between the plates, the equation is modified, as discussed below.)

Capacitance and charge stored in a parallel plate capacitor

(a) What is the capacitance of a parallel plate capacitor with metal plates, each of area 1.00 m 2 size 12{m rSup { size 8{2} } } {} , separated by 1.00 mm? (b) What charge is stored in this capacitor if a voltage of 3.00 × 10 3 V is applied to it?

Strategy

Finding the capacitance C size 12{C} {} is a straightforward application of the equation C = ε 0 A / d size 12{C=e rSub { size 8{0} } A/d} {} . Once C size 12{C} {} is found, the charge stored can be found using the equation Q = CV size 12{Q= ital "CV"} {} .

Solution for (a)

Entering the given values into the equation for the capacitance of a parallel plate capacitor yields

C = ε 0 A d = 8.85 × 10 –12 F m 1.00 m 2 1.00 × 10 –3 m = 8.85 × 10 –9 F = 8.85 nF.

Discussion for (a)

This small value for the capacitance indicates how difficult it is to make a device with a large capacitance. Special techniques help, such as using very large area thin foils placed close together.

Solution for (b)

The charge stored in any capacitor is given by the equation Q = CV size 12{Q= ital "CV"} {} . Entering the known values into this equation gives

Q = CV = 8.85 × 10 –9 F 3.00 × 10 3 V = 26.6 μC. alignl { stack { size 12{Q= ital "CV"= left (8 "." "85"´"10" rSup { size 8{-9} } " F" right ) left (3 "." "00"´"10" rSup { size 8{3} } " V" right )} {} #="26" "." 6 µC "." {} } } {}

Discussion for (b)

This charge is only slightly greater than those found in typical static electricity. Since air breaks down at about 3 . 00 × 10 6 V/m size 12{3 "." "00" times "10" rSup { size 8{6} } } {} , more charge cannot be stored on this capacitor by increasing the voltage.

Got questions? Get instant answers now!

Another interesting biological example dealing with electric potential is found in the cell’s plasma membrane. The membrane sets a cell off from its surroundings and also allows ions to selectively pass in and out of the cell. There is a potential difference across the membrane of about –70 mV . This is due to the mainly negatively charged ions in the cell and the predominance of positively charged sodium ( Na + ) ions outside. Things change when a nerve cell is stimulated. Na + ions are allowed to pass through the membrane into the cell, producing a positive membrane potential—the nerve signal. The cell membrane is about 7 to 10 nm thick. An approximate value of the electric field across it is given by

E = V d = –70 × 10 –3 V 8 × 10 –9 m = –9 × 10 6 V/m . size 12{E=V/d"=-""70"´"10" rSup { size 8{-3} } V/ left (8´"10" rSup { size 8{-9} } m right )"=-"9´"10" rSup { size 8{+6} } "V/m"} {}

This electric field is enough to cause a breakdown in air.

Dielectric

The previous example highlights the difficulty of storing a large amount of charge in capacitors. If d size 12{d} {} is made smaller to produce a larger capacitance, then the maximum voltage must be reduced proportionally to avoid breakdown (since E = V / d size 12{E=V/d} {} ). An important solution to this difficulty is to put an insulating material, called a dielectric    , between the plates of a capacitor and allow d size 12{d} {} to be as small as possible. Not only does the smaller d size 12{d} {} make the capacitance greater, but many insulators can withstand greater electric fields than air before breaking down.

Practice Key Terms 6

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask