<< Chapter < Page Chapter >> Page >

Hadrons and leptons

Particles can also be revealingly grouped according to what forces they feel between them. All particles (even those that are massless) are affected by gravity, since gravity affects the space and time in which particles exist. All charged particles are affected by the electromagnetic force, as are neutral particles that have an internal distribution of charge (such as the neutron with its magnetic moment). Special names are given to particles that feel the strong and weak nuclear forces. Hadrons are particles that feel the strong nuclear force, whereas leptons    are particles that do not. The proton, neutron, and the pions are examples of hadrons. The electron, positron, muons, and neutrinos are examples of leptons, the name meaning low mass. Leptons feel the weak nuclear force. In fact, all particles feel the weak nuclear force. This means that hadrons are distinguished by being able to feel both the strong and weak nuclear forces.

[link] lists the characteristics of some of the most important subatomic particles, including the directly observed carrier particles for the electromagnetic and weak nuclear forces, all leptons, and some hadrons. Several hints related to an underlying substructure emerge from an examination of these particle characteristics. Note that the carrier particles are called gauge bosons . First mentioned in Patterns in Spectra Reveal More Quantization , a boson    is a particle with zero or an integer value of intrinsic spin (such as s = 0, 1, 2, ... size 12{s=0,`1,`2,` "." "." "." } {} ), whereas a fermion    is a particle with a half-integer value of intrinsic spin ( s = 1 / 2, 3 / 2, . . . size 12{s=1/2,`3/2,` "." "." "." } {} ). Fermions obey the Pauli exclusion principle whereas bosons do not. All the known and conjectured carrier particles are bosons.

The upper image shows an electron and positron colliding head-on. The lower image shows a starburst image from which two photons are emerging in opposite directions.
When a particle encounters its antiparticle, they annihilate, often producing pure energy in the form of photons. In this case, an electron and a positron convert all their mass into two identical energy rays, which move away in opposite directions to keep total momentum zero as it was before. Similar annihilations occur for other combinations of a particle with its antiparticle, sometimes producing more particles while obeying all conservation laws.
Selected particle characteristics The lower of the size 12{ -+ {}} {} or ± size 12{ +- {}} {} symbols are the values for antiparticles.
Category Particle name Symbol Antiparticle Rest mass ( MeV / c 2 ) B L e L μ L τ size 12{L rSub { size 8{τ} } } {} S size 12{S} {} Lifetime Lifetimes are traditionally given as t 1 / 2 / 0 . 693 (which is 1 / λ size 12{ {1} slash {λ} } {} , the inverse of the decay constant). (s)
Gauge Photon γ size 12{γ} {} Self 0 0 0 0 0 0 Stable
Bosons W size 12{W} {} W + size 12{W rSup { size 8{+{}} } } {} W size 12{W rSup { size 8{ - {}} } } {} 80 . 39 × 10 3 size 12{"80" "." "22" times "10" rSup { size 8{3} } } {} 0 0 0 0 0 1.6 × 10 25 size 12{3 times "10" rSup { size 8{ - "25"} } } {}
Z size 12{Z} {} Z 0 size 12{Z rSup { size 8{0} } } {} Self 91 . 19 × 10 3 size 12{"91" "." "19" times "10" rSup { size 8{3} } } {} 0 0 0 0 0 1.32 × 10 25 size 12{3 times "10" rSup { size 8{ - "25"} } } {}
Leptons Electron e size 12{e rSup { size 8{ - {}} } } {} e + size 12{e rSup { size 8{ - {}} } } {} 0.511 0 ± 1 size 12{ +- 1} {} 0 0 0 Stable
Neutrino (e) ν e size 12{e rSup { size 8{ - {}} } } {} v ¯ e size 12{ { bar {v}} rSub { size 8{e} } } {} 0 7 . 0 eV size 12{0` left (<7 "." 0`"eV" right )} {} Neutrino masses may be zero. Experimental upper limits are given in parentheses. 0 ± 1 size 12{ +- 1} {} 0 0 0 Stable
Muon μ size 12{μ rSup { size 8{ - {}} } } {} μ + size 12{μ rSup { size 8{+{}} } } {} 105.7 0 0 ± 1 size 12{ +- 1} {} 0 0 2 . 20 × 10 6 size 12{2 "." "20" times "10" rSup { size 8{ - 6} } } {}
Neutrino ( μ size 12{μ} {} ) v μ size 12{v rSub { size 8{μ} } } {} v - μ size 12{v rSub { size 8{μ} } } {} 0 ( < 0.27 ) 0 0 ± 1 size 12{ +- 1} {} 0 0 Stable
Tau τ size 12{τ rSup { size 8{ - {}} } } {} τ + size 12{τ rSup { size 8{+{}} } } {} 1777 0 0 0 ± 1 size 12{ +- 1} {} 0 2 . 91 × 10 13 size 12{2 "." "29" times "10" rSup { size 8{ - "13"} } } {}
Neutrino ( τ size 12{τ} {} ) v τ size 12{v rSub { size 8{τ} } } {} v - τ size 12{ { bar {v}} rSub { size 8{τ} } } {} 0 ( < 31 ) 0 0 0 ± 1 size 12{ +- 1} {} 0 Stable
Hadrons (selected)
  Mesons Pion π + size 12{π rSup { size 8{+{}} } } {} π size 12{π rSup { size 8{ - {}} } } {} 139.6 0 0 0 0 0 2.60 × 10 −8
π 0 size 12{π rSup { size 8{0} } } {} Self 135.0 0 0 0 0 0 8.4 × 10 −17
Kaon K + size 12{K rSup { size 8{+{}} } } {} K size 12{K rSup { size 8{ - {}} } } {} 493.7 0 0 0 0 ± 1 size 12{ +- 1} {} 1.24 × 10 −8
K 0 size 12{K rSup { size 8{0} } } {} K - 0 size 12{ { bar {K}} rSup { size 8{0} } } {} 497.6 0 0 0 0 ± 1 size 12{ +- 1} {} 0.90 × 10 −10
Eta η 0 size 12{η rSup { size 8{0} } } {} Self 547.9 0 0 0 0 0 2.53 × 10 −19
(many other mesons known)
  Baryons Proton p size 12{p} {} p - size 12{ { bar {p}}} {} 938.3 ± 1 0 0 0 0 Stable Experimental lower limit is >5 × 10 32 size 12{>5 times "10" rSup { size 8{"32"} } } {} for proposed mode of decay.
Neutron n size 12{n} {} n - size 12{ { bar {n}}} {} 939.6 ± 1 0 0 0 0 882
Lambda Λ 0 size 12{Λ rSup { size 8{0} } } {} Λ - 0 size 12{ { bar {Λ}} rSup { size 8{0} } } {} 1115.7 ± 1 0 0 0 1 size 12{ -+ 1} {} 2.63 × 10 −10
Sigma Σ + size 12{Σ rSup { size 8{+{}} } } {} Σ - size 12{ { bar {Σ}} rSup { size 8{ - {}} } } {} 1189.4 ± 1 0 0 0 1 size 12{ -+ 1} {} 0.80 × 10 −10
Σ 0 size 12{Σ rSup { size 8{0} } } {} Σ - 0 size 12{ { bar {Σ}} rSup { size 8{0} } } {} 1192.6 ± 1 0 0 0 1 size 12{ -+ 1} {} 7.4 × 10 −20
Σ size 12{Σ rSup { size 8{ - {}} } } {} Σ - + size 12{ { bar {Σ}} rSup { size 8{+{}} } } {} 1197.4 ± 1 0 0 0 1 size 12{ -+ 1} {} 1.48 × 10 −10
Xi Ξ 0 size 12{Ξ rSup { size 8{0} } } {} Ξ - 0 size 12{ { bar {Ξ}} rSup { size 8{0} } } {} 1314.9 ± 1 0 0 0 2 size 12{ -+ 2} {} 2.90 × 10 −10
Ξ size 12{Ξ rSup { size 8{ - {}} } } {} Ξ + size 12{Ξ rSup { size 8{+{}} } } {} 1321.7 ± 1 0 0 0 2 size 12{ -+ 2} {} 1.64 × 10 −10
Omega Ω size 12{ %OMEGA rSup { size 8{ - {}} } } {} Ω + size 12{ %OMEGA rSup { size 8{+{}} } } {} 1672.5 ± 1 0 0 0 3 size 12{ -+ 3} {} 0.82 × 10 −10
(many other baryons known)

Questions & Answers

material that allows electric current to pass through
Deng Reply
material which don't allow electric current is called
Deng
insulators
Covenant
how to study physic and understand
Ewa Reply
what is conservative force with examples
Moses
what is work
Fredrick Reply
the transfer of energy by a force that causes an object to be displaced; the product of the component of the force in the direction of the displacement and the magnitude of the displacement
AI-Robot
why is it from light to gravity
Esther Reply
difference between model and theory
Esther
Is the ship moving at a constant velocity?
Kamogelo Reply
The full note of modern physics
aluet Reply
introduction to applications of nuclear physics
aluet Reply
the explanation is not in full details
Moses Reply
I need more explanation or all about kinematics
Moses
yes
zephaniah
I need more explanation or all about nuclear physics
aluet
Show that the equal masses particles emarge from collision at right angle by making explicit used of fact that momentum is a vector quantity
Muhammad Reply
yh
Isaac
A wave is described by the function D(x,t)=(1.6cm) sin[(1.2cm^-1(x+6.8cm/st] what are:a.Amplitude b. wavelength c. wave number d. frequency e. period f. velocity of speed.
Majok Reply
what is frontier of physics
Somto Reply
A body is projected upward at an angle 45° 18minutes with the horizontal with an initial speed of 40km per second. In hoe many seconds will the body reach the ground then how far from the point of projection will it strike. At what angle will the horizontal will strike
Gufraan Reply
Suppose hydrogen and oxygen are diffusing through air. A small amount of each is released simultaneously. How much time passes before the hydrogen is 1.00 s ahead of the oxygen? Such differences in arrival times are used as an analytical tool in gas chromatography.
Ezekiel Reply
please explain
Samuel
what's the definition of physics
Mobolaji Reply
what is physics
Nangun Reply
the science concerned with describing the interactions of energy, matter, space, and time; it is especially interested in what fundamental mechanisms underlie every phenomenon
AI-Robot

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask