<< Chapter < Page Chapter >> Page >

(a) The 210 Po source used in a physics laboratory is labeled as having an activity of 1.0 μ Ci size 12{1 "." 0 m"Ci"} {} on the date it was prepared. A student measures the radioactivity of this source with a Geiger counter and observes 1500 counts per minute. She notices that the source was prepared 120 days before her lab. What fraction of the decays is she observing with her apparatus? (b) Identify some of the reasons that only a fraction of the α size 12{α} {} s emitted are observed by the detector.

(a) 1.23 × 10 3 size 12{ {underline {1 "." "23" times "10" rSup { size 8{ - 3} } }} } {}

(b) Only part of the emitted radiation goes in the direction of the detector. Only a fraction of that causes a response in the detector. Some of the emitted radiation (mostly α size 12{α} {} particles) is observed within the source. Some is absorbed within the source, some is absorbed by the detector, and some does not penetrate the detector.

Got questions? Get instant answers now!

Armor-piercing shells with depleted uranium cores are fired by aircraft at tanks. (The high density of the uranium makes them effective.) The uranium is called depleted because it has had its 235 U removed for reactor use and is nearly pure 238 U . Depleted uranium has been erroneously called non-radioactive. To demonstrate that this is wrong: (a) Calculate the activity of 60.0 g of pure 238 U size 12{"" lSup { size 8{"238"} } U} {} . (b) Calculate the activity of 60.0 g of natural uranium, neglecting the 234 U and all daughter nuclides.

Got questions? Get instant answers now!

The ceramic glaze on a red-orange Fiestaware plate is U 2 O 3 and contains 50.0 grams of 238 U , but very little 235 U . (a) What is the activity of the plate? (b) Calculate the total energy that will be released by the 238 U decay. (c) If energy is worth 12.0 cents per kW h , what is the monetary value of the energy emitted? (These plates went out of production some 30 years ago, but are still available as collectibles.)

(a) 1.68 × 10 5 Ci

(b) 8.65 × 10 10 J

(c) $ 2.9 × 10 3

Got questions? Get instant answers now!

Large amounts of depleted uranium ( 238 U ) are available as a by-product of uranium processing for reactor fuel and weapons. Uranium is very dense and makes good counter weights for aircraft. Suppose you have a 4000-kg block of 238 U . (a) Find its activity. (b) How many calories per day are generated by thermalization of the decay energy? (c) Do you think you could detect this as heat? Explain.

Got questions? Get instant answers now!

The Galileo space probe was launched on its long journey past several planets in 1989, with an ultimate goal of Jupiter. Its power source is 11.0 kg of 238 Pu , a by-product of nuclear weapons plutonium production. Electrical energy is generated thermoelectrically from the heat produced when the 5.59-MeV α particles emitted in each decay crash to a halt inside the plutonium and its shielding. The half-life of 238 Pu is 87.7 years. (a) What was the original activity of the 238 Pu in becquerel? (b) What power was emitted in kilowatts? (c) What power was emitted 12.0 y after launch? You may neglect any extra energy from daughter nuclides and any losses from escaping γ rays.

(a) 6.97 × 10 15 Bq

(b) 6.24 kW

(c) 5.67 kW

Got questions? Get instant answers now!

Construct Your Own Problem

Consider the generation of electricity by a radioactive isotope in a space probe, such as described in [link] . Construct a problem in which you calculate the mass of a radioactive isotope you need in order to supply power for a long space flight. Among the things to consider are the isotope chosen, its half-life and decay energy, the power needs of the probe and the length of the flight.

Got questions? Get instant answers now!

Unreasonable Results

A nuclear physicist finds 1.0 μ g of 236 U in a piece of uranium ore and assumes it is primordial since its half-life is 2.3 × 10 7 y . (a) Calculate the amount of 236 U that would had to have been on Earth when it formed 4.5 × 10 9 y ago for 1.0 μ g to be left today. (b) What is unreasonable about this result? (c) What assumption is responsible?

Got questions? Get instant answers now!

Unreasonable Results

(a) Repeat [link] but include the 0.0055% natural abundance of 234 U with its 2.45 × 10 5 y half-life. (b) What is unreasonable about this result? (c) What assumption is responsible? (d) Where does the 234 U come from if it is not primordial?

Got questions? Get instant answers now!

Unreasonable Results

The manufacturer of a smoke alarm decides that the smallest current of α radiation he can detect is 1.00 μ A . (a) Find the activity in curies of an α emitter that produces a 1.00 μ A current of α particles. (b) What is unreasonable about this result? (c) What assumption is responsible?

(a) 84.5 Ci

(b) An extremely large activity, many orders of magnitude greater than permitted for home use.

(c) The assumption of 1.00 μA is unreasonably large. Other methods can detect much smaller decay rates.

Got questions? Get instant answers now!

Questions & Answers

material that allows electric current to pass through
Deng Reply
material which don't allow electric current is called
Deng
insulators
Covenant
how to study physic and understand
Ewa Reply
what is conservative force with examples
Moses
what is work
Fredrick Reply
the transfer of energy by a force that causes an object to be displaced; the product of the component of the force in the direction of the displacement and the magnitude of the displacement
AI-Robot
why is it from light to gravity
Esther Reply
difference between model and theory
Esther
Is the ship moving at a constant velocity?
Kamogelo Reply
The full note of modern physics
aluet Reply
introduction to applications of nuclear physics
aluet Reply
the explanation is not in full details
Moses Reply
I need more explanation or all about kinematics
Moses
yes
zephaniah
I need more explanation or all about nuclear physics
aluet
Show that the equal masses particles emarge from collision at right angle by making explicit used of fact that momentum is a vector quantity
Muhammad Reply
yh
Isaac
A wave is described by the function D(x,t)=(1.6cm) sin[(1.2cm^-1(x+6.8cm/st] what are:a.Amplitude b. wavelength c. wave number d. frequency e. period f. velocity of speed.
Majok Reply
what is frontier of physics
Somto Reply
A body is projected upward at an angle 45° 18minutes with the horizontal with an initial speed of 40km per second. In hoe many seconds will the body reach the ground then how far from the point of projection will it strike. At what angle will the horizontal will strike
Gufraan Reply
Suppose hydrogen and oxygen are diffusing through air. A small amount of each is released simultaneously. How much time passes before the hydrogen is 1.00 s ahead of the oxygen? Such differences in arrival times are used as an analytical tool in gas chromatography.
Ezekiel Reply
please explain
Samuel
what's the definition of physics
Mobolaji Reply
what is physics
Nangun Reply
the science concerned with describing the interactions of energy, matter, space, and time; it is especially interested in what fundamental mechanisms underlie every phenomenon
AI-Robot
Practice Key Terms 8

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask