<< Chapter < Page Chapter >> Page >

If you examine the periodic table of the elements, you will find that Th has Z = 90 size 12{Z="90"} {} , two fewer than U, which has Z = 92 size 12{Z="92"} {} . Similarly, in the second decay equation    , we see that U has two fewer protons than Pu, which has Z = 94 size 12{Z="94"} {} . The general rule for α size 12{α} {} decay is best written in the format Z A X N . If a certain nuclide is known to α size 12{α} {} decay (generally this information must be looked up in a table of isotopes, such as in Appendix B ), its α size 12{α} {} decay equation    is

Z A X N Z 2 A 4 Y N 2 + 2 4 He 2 ( α decay ) size 12{α} {}

where Y is the nuclide that has two fewer protons than X, such as Th having two fewer than U. So if you were told that 239 Pu α decays and were asked to write the complete decay equation, you would first look up which element has two fewer protons (an atomic number two lower) and find that this is uranium. Then since four nucleons have broken away from the original 239, its atomic mass would be 235.

It is instructive to examine conservation laws related to α size 12{α} {} decay. You can see from the equation Z A X N Z 2 A 4 Y N 2 + 2 4 He 2 that total charge is conserved. Linear and angular momentum are conserved, too. Although conserved angular momentum is not of great consequence in this type of decay, conservation of linear momentum has interesting consequences. If the nucleus is at rest when it decays, its momentum is zero. In that case, the fragments must fly in opposite directions with equal-magnitude momenta so that total momentum remains zero. This results in the α size 12{α} {} particle carrying away most of the energy, as a bullet from a heavy rifle carries away most of the energy of the powder burned to shoot it. Total mass–energy is also conserved: the energy produced in the decay comes from conversion of a fraction of the original mass. As discussed in Atomic Physics , the general relationship is

E = ( Δ m ) c 2 .

Here, E size 12{E} {} is the nuclear reaction energy    (the reaction can be nuclear decay or any other reaction), and Δ m size 12{Δm} {} is the difference in mass between initial and final products. When the final products have less total mass, Δ m size 12{Δm} {} is positive, and the reaction releases energy (is exothermic). When the products have greater total mass, the reaction is endothermic ( Δ m size 12{Δm} {} is negative) and must be induced with an energy input. For α size 12{α} {} decay to be spontaneous, the decay products must have smaller mass than the parent.

Alpha decay energy found from nuclear masses

Find the energy emitted in the α size 12{α} {} decay of 239 Pu size 12{"" lSup { size 8{"239"} } "Pu"} {} .

Strategy

Nuclear reaction energy, such as released in α decay, can be found using the equation E = ( Δ m ) c 2 size 12{E= \( Δm \) c"" lSup { size 8{2} } } {} . We must first find Δ m size 12{Δm} {} , the difference in mass between the parent nucleus and the products of the decay. This is easily done using masses given in Appendix A .

Solution

The decay equation was given earlier for 239 Pu size 12{"" lSup { size 8{"239"} } "Pu"} {} ; it is

239 Pu 235 U + 4 He .

Thus the pertinent masses are those of 239 Pu , 235 U , and the α particle or 4 He , all of which are listed in Appendix A . The initial mass was m ( 239 Pu ) = 239 . 052157 u . The final mass is the sum m ( 235 U ) + m ( 4 He ) = 235 . 043924 u + 4.002602 u = 239.046526 u . Thus,

Δ m = m ( 239 Pu ) [ m ( 235 U ) + m ( 4 He ) ] = 239.052157 u 239.046526 u = 0.0005631 u.

Now we can find E size 12{E} {} by entering Δ m size 12{Δm} {} into the equation:

E = ( Δ m ) c 2 = ( 0 .005631 u ) c 2 .

We know 1 u = 931.5 MeV/ c 2 size 12{1" u =931" "." "5 MeV/"c rSup { size 8{2} } } {} , and so

E = ( 0 . 005631 ) ( 931.5 MeV / c 2 ) ( c 2 ) = 5.25 MeV . size 12{E= \( 0 "." "005631" \) \( "931" "." 5" MeV"/c rSup { size 8{2} } \) \( c rSup { size 8{2} } \) =5 "." "25"" MeV"} {}

Discussion

The energy released in this α size 12{α} {} decay is in the MeV size 12{"MeV"} {} range, about 10 6 size 12{"10" rSup { size 8{6} } } {} times as great as typical chemical reaction energies, consistent with many previous discussions. Most of this energy becomes kinetic energy of the α size 12{α} {} particle (or 4 He size 12{"" lSup { size 8{4} } "He"} {} nucleus), which moves away at high speed. The energy carried away by the recoil of the 235 U size 12{"" lSup { size 8{"235"} } U} {} nucleus is much smaller in order to conserve momentum. The 235 U size 12{"" lSup { size 8{"235"} } U} {} nucleus can be left in an excited state to later emit photons ( γ size 12{γ} {} rays). This decay is spontaneous and releases energy, because the products have less mass than the parent nucleus. The question of why the products have less mass will be discussed in Binding Energy . Note that the masses given in Appendix A are atomic masses of neutral atoms, including their electrons. The mass of the electrons is the same before and after α decay, and so their masses subtract out when finding Δ m . In this case, there are 94 electrons before and after the decay.

Got questions? Get instant answers now!

Questions & Answers

what does the ideal gas law states
Joy Reply
Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask