<< Chapter < Page Chapter >> Page >

Phet explorations: capacitor lab

Explore how a capacitor works! Change the size of the plates and add a dielectric to see the effect on capacitance. Change the voltage and see charges built up on the plates. Observe the electric field in the capacitor. Measure the voltage and the electric field.

Capacitor Lab

Section summary

  • A capacitor is a device used to store charge.
  • The amount of charge Q size 12{Q} {} a capacitor can store depends on two major factors—the voltage applied and the capacitor’s physical characteristics, such as its size.
  • The capacitance C size 12{C} {} is the amount of charge stored per volt , or
    C = Q V . size 12{C=Q/V} {}
  • The capacitance of a parallel plate capacitor is C = ε 0 A d size 12{C=e rSub { size 8{0} } A/d} {} , when the plates are separated by air or free space. ε 0 is called the permittivity of free space.
  • A parallel plate capacitor with a dielectric between its plates has a capacitance given by
    C = κε 0 A d , size 12{C=e rSub { size 8{0} } A/d} {}
    where κ is the dielectric constant of the material.
  • The maximum electric field strength above which an insulating material begins to break down and conduct is called dielectric strength.

Conceptual questions

Does the capacitance of a device depend on the applied voltage? What about the charge stored in it?

Got questions? Get instant answers now!

Use the characteristics of the Coulomb force to explain why capacitance should be proportional to the plate area of a capacitor. Similarly, explain why capacitance should be inversely proportional to the separation between plates.

Got questions? Get instant answers now!

Give the reason why a dielectric material increases capacitance compared with what it would be with air between the plates of a capacitor. What is the independent reason that a dielectric material also allows a greater voltage to be applied to a capacitor? (The dielectric thus increases C size 12{C} {} and permits a greater V size 12{V} {} .)

Got questions? Get instant answers now!

How does the polar character of water molecules help to explain water’s relatively large dielectric constant? ( [link] )

Got questions? Get instant answers now!

Sparks will occur between the plates of an air-filled capacitor at lower voltage when the air is humid than when dry. Explain why, considering the polar character of water molecules.

Got questions? Get instant answers now!

Water has a large dielectric constant, but it is rarely used in capacitors. Explain why.

Got questions? Get instant answers now!

Membranes in living cells, including those in humans, are characterized by a separation of charge across the membrane. Effectively, the membranes are thus charged capacitors with important functions related to the potential difference across the membrane. Is energy required to separate these charges in living membranes and, if so, is its source the metabolization of food energy or some other source?

Got questions? Get instant answers now!
The semipermeable membrane of a cell is shown, with different concentrations of potassium cations, sodium cations, and chloride anions inside and outside the cell. The ions are represented by small, colored circles. In its resting state, the cell membrane is permeable to potassium and chloride ions, but it is impermeable to sodium ions. By diffusion, potassium cations travel out of the cell, going through the cell membrane and forming a layer of positive charge on the outer surface of the membrane. By diffusion, chloride anions go into the cell, going through the cell membrane and forming a layer of negative charge on the inner surface of the membrane. As a result, a voltage is set up across the cell membrane. The Coulomb force prevents all the ions from crossing the membrane.
The semipermeable membrane of a cell has different concentrations of ions inside and out. Diffusion moves the K + (potassium) and Cl (chloride) ions in the directions shown, until the Coulomb force halts further transfer. This results in a layer of positive charge on the outside, a layer of negative charge on the inside, and thus a voltage across the cell membrane. The membrane is normally impermeable to Na + (sodium ions).

Problems&Exercises

What charge is stored in a 180 µF size 12{"190" µF} {} capacitor when 120 V is applied to it?

21 . 6 mC size 12{"21" "." 6" mC"} {}

Got questions? Get instant answers now!

Find the charge stored when 5.50 V is applied to an 8.00 pF capacitor.

Got questions? Get instant answers now!

What charge is stored in the capacitor in [link] ?

80 . 0 mC size 12{"80" "." 0" mC"} {}

Got questions? Get instant answers now!

Calculate the voltage applied to a 2 . 00 µF size 12{2 "." "00" mF} {} capacitor when it holds 3 . 10 µC size 12{3 "." "10" mC} {} of charge.

Got questions? Get instant answers now!

What voltage must be applied to an 8.00 nF capacitor to store 0.160 mC of charge?

20.0 kV

Got questions? Get instant answers now!

What capacitance is needed to store 3 . 00 µC size 12{3 "." "00" mC} {} of charge at a voltage of 120 V?

Got questions? Get instant answers now!

What is the capacitance of a large Van de Graaff generator’s terminal, given that it stores 8.00 mC of charge at a voltage of 12.0 MV?

667 pF size 12{"667"" pF"} {}

Got questions? Get instant answers now!

Find the capacitance of a parallel plate capacitor having plates of area 5 . 00 m 2 size 12{5 "." "00"`m rSup { size 8{2} } } {} that are separated by 0.100 mm of Teflon.

Got questions? Get instant answers now!

(a)What is the capacitance of a parallel plate capacitor having plates of area 1.50 m 2 size 12{m rSup { size 8{2} } } {} that are separated by 0.0200 mm of neoprene rubber? (b) What charge does it hold when 9.00 V is applied to it?

(a) 4 . 4 µF size 12{4 "." "4 "mF} {}

(b) 4 . 0 × 10 5 C size 12{4 "." 0 times "10" rSup { size 8{ - 5} } " C"} {}

Got questions? Get instant answers now!

Integrated Concepts

A prankster applies 450 V to an 80 . 0 µF size 12{"80" "." 0 mF} {} capacitor and then tosses it to an unsuspecting victim. The victim’s finger is burned by the discharge of the capacitor through 0.200 g of flesh. What is the temperature increase of the flesh? Is it reasonable to assume no phase change?

Got questions? Get instant answers now!

Unreasonable Results

(a) A certain parallel plate capacitor has plates of area 4.00 m 2 size 12{m rSup { size 8{2} } } {} , separated by 0.0100 mm of nylon, and stores 0.170 C of charge. What is the applied voltage? (b) What is unreasonable about this result? (c) Which assumptions are responsible or inconsistent?

(a) 14.2 kV

(b) The voltage is unreasonably large, more than 100 times the breakdown voltage of nylon.

(c) The assumed charge is unreasonably large and cannot be stored in a capacitor of these dimensions.

Got questions? Get instant answers now!

Questions & Answers

material that allows electric current to pass through
Deng Reply
material which don't allow electric current is called
Deng
insulators
Covenant
how to study physic and understand
Ewa Reply
what is conservative force with examples
Moses
what is work
Fredrick Reply
the transfer of energy by a force that causes an object to be displaced; the product of the component of the force in the direction of the displacement and the magnitude of the displacement
AI-Robot
why is it from light to gravity
Esther Reply
difference between model and theory
Esther
Is the ship moving at a constant velocity?
Kamogelo Reply
The full note of modern physics
aluet Reply
introduction to applications of nuclear physics
aluet Reply
the explanation is not in full details
Moses Reply
I need more explanation or all about kinematics
Moses
yes
zephaniah
I need more explanation or all about nuclear physics
aluet
Show that the equal masses particles emarge from collision at right angle by making explicit used of fact that momentum is a vector quantity
Muhammad Reply
yh
Isaac
A wave is described by the function D(x,t)=(1.6cm) sin[(1.2cm^-1(x+6.8cm/st] what are:a.Amplitude b. wavelength c. wave number d. frequency e. period f. velocity of speed.
Majok Reply
what is frontier of physics
Somto Reply
A body is projected upward at an angle 45° 18minutes with the horizontal with an initial speed of 40km per second. In hoe many seconds will the body reach the ground then how far from the point of projection will it strike. At what angle will the horizontal will strike
Gufraan Reply
Suppose hydrogen and oxygen are diffusing through air. A small amount of each is released simultaneously. How much time passes before the hydrogen is 1.00 s ahead of the oxygen? Such differences in arrival times are used as an analytical tool in gas chromatography.
Ezekiel Reply
please explain
Samuel
what's the definition of physics
Mobolaji Reply
what is physics
Nangun Reply
the science concerned with describing the interactions of energy, matter, space, and time; it is especially interested in what fundamental mechanisms underlie every phenomenon
AI-Robot
Practice Key Terms 6

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask