<< Chapter < Page Chapter >> Page >

Learning objectives

By the end of this section, you will be able to:

  • List the three properties of a conductor in electrostatic equilibrium.
  • Explain the effect of an electric field on free charges in a conductor.
  • Explain why no electric field may exist inside a conductor.
  • Describe the electric field surrounding Earth.
  • Explain what happens to an electric field applied to an irregular conductor.
  • Describe how a lightning rod works.
  • Explain how a metal car may protect passengers inside from the dangerous electric fields caused by a downed line touching the car.

The information presented in this section supports the following AP learning objectives:

  • 2.C.3.1 The student is able to explain the inverse square dependence of the electric field surrounding a spherically symmetric electrically charged object.
  • 2.C.5.1 The student is able to create representations of the magnitude and direction of the electric field at various distances (small compared to plate size) from two electrically charged plates of equal magnitude and opposite signs and is able to recognize that the assumption of uniform field is not appropriate near edges of plates.

Conductors contain free charges that move easily. When excess charge is placed on a conductor or the conductor is put into a static electric field, charges in the conductor quickly respond to reach a steady state called electrostatic equilibrium    .

[link] shows the effect of an electric field on free charges in a conductor. The free charges move until the field is perpendicular to the conductor's surface. There can be no component of the field parallel to the surface in electrostatic equilibrium, since, if there were, it would produce further movement of charge. A positive free charge is shown, but free charges can be either positive or negative and are, in fact, negative in metals. The motion of a positive charge is equivalent to the motion of a negative charge in the opposite direction.

In part a, an electric field E exists at some angle with the horizontal applied on a conductor. One component of this field E parallel is along x axis represented by a vector arrow and other E perpendicular, is along y axis represented by a vector arrow. Charge inside the conductor moves along x axis so the force acting on it is F parallel, which is equal to q multiplied by E parallel. In part b, a charge is shown inside the conductor and electric field is represented by a vector arrow pointing upward starting from the surface of the conductor.
When an electric field E size 12{E} {} is applied to a conductor, free charges inside the conductor move until the field is perpendicular to the surface. (a) The electric field is a vector quantity, with both parallel and perpendicular components. The parallel component ( E size 12{E rSub { size 8{ \rdline } } } {} ) exerts a force ( F size 12{F rSub { size 8{ \rdline } } } {} ) on the free charge q size 12{q} {} , which moves the charge until F = 0 size 12{F rSub { size 8{ \rdline } } =0} {} . (b) The resulting field is perpendicular to the surface. The free charge has been brought to the conductor's surface, leaving electrostatic forces in equilibrium.

A conductor placed in an electric field will be polarized    . [link] shows the result of placing a neutral conductor in an originally uniform electric field. The field becomes stronger near the conductor but entirely disappears inside it.

A spherical conductor is placed in the external electric field. The field lines are shown running from left to right. The field lines enter and leave the conductor at right angles. Negative charges accumulate on the left surface of the conductor and positive charges accumulate on the right surface of the conductor.
This illustration shows a spherical conductor in static equilibrium with an originally uniform electric field. Free charges move within the conductor, polarizing it, until the electric field lines are perpendicular to the surface. The field lines end on excess negative charge on one section of the surface and begin again on excess positive charge on the opposite side. No electric field exists inside the conductor, since free charges in the conductor would continue moving in response to any field until it was neutralized.

Questions & Answers

explain the basic method of power of power rule under indices.
Sumo Reply
Why is b in the answer
Dahsolar Reply
how do you work it out?
Brad Reply
answer
Ernest
heheheehe
Nitin
(Pcos∅+qsin∅)/(pcos∅-psin∅)
John Reply
how to do that?
Rosemary Reply
what is it about?
Amoah
how to answer the activity
Chabelita Reply
how to solve the activity
Chabelita
solve for X,,4^X-6(2^)-16=0
Alieu Reply
x4xminus 2
Lominate
sobhan Singh jina uniwarcity tignomatry ka long answers tile questions
harish Reply
t he silly nut company makes two mixtures of nuts: mixture a and mixture b. a pound of mixture a contains 12 oz of peanuts, 3 oz of almonds and 1 oz of cashews and sells for $4. a pound of mixture b contains 12 oz of peanuts, 2 oz of almonds and 2 oz of cashews and sells for $5. the company has 1080
ZAHRO Reply
If  , , are the roots of the equation 3 2 0, x px qx r     Find the value of 1  .
Swetha Reply
Parts of a pole were painted red, blue and yellow. 3/5 of the pole was red and 7/8 was painted blue. What part was painted yellow?
Patrick Reply
Parts of the pole was painted red, blue and yellow. 3 /5 of the pole was red and 7 /8 was painted blue. What part was painted yellow?
Patrick
how I can simplify algebraic expressions
Katleho Reply
Lairene and Mae are joking that their combined ages equal Sam’s age. If Lairene is twice Mae’s age and Sam is 69 yrs old, what are Lairene’s and Mae’s ages?
Mary Reply
23yrs
Yeboah
lairenea's age is 23yrs
ACKA
hy
Katleho
Ello everyone
Katleho
Laurene is 46 yrs and Mae is 23 is
Solomon
hey people
christopher
age does not matter
christopher
solve for X, 4^x-6(2*)-16=0
Alieu
prove`x^3-3x-2cosA=0 (-π<A<=π
Mayank Reply
create a lesson plan about this lesson
Rose Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 6

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask