<< Chapter < Page Chapter >> Page >

The replication mechanism depends on the viral genome (DNA or RNA). DNA viruses usually use host cell proteins and enzymes to make additional DNA that is then used to copy the genome or be transcribed to messenger RNA (mRNA). The mRNA is then used in protein synthesis. RNA viruses, such as the influenza virus, usually use the RNA as a template for synthesis of viral genomic RNA and mRNA. The viral mRNA is translated into viral enzymes and capsid proteins to assemble new virions ( [link] ).

The last stage of viral replication is the release of the new virions into the host organism, where they are able to infect adjacent cells and repeat the replication cycle. Some viruses are released when the host cell dies and other viruses can leave infected cells by budding through the membrane without directly killing the cell.

The illustration shows the steps of an influenza virus infection. In step 1, influenza virus becomes attached to a receptor on a target epithelial cell. In step 2, the cell engulfs the virus by endocytosis, and the virus becomes encased in the cell’s plasma membrane. In step 3, the membrane dissolves, and the viral contents are released into the cytoplasm. Viral mRNA enters the nucleus, where it is replicated by viral RNA polymerase. In step 4, viral mRNA exits to the cytoplasm, where it is used to make viral proteins. In step 5, new viral particles are released into the extracellular fluid. The cell, which is not killed in the process, continues to make new virus.
In influenza virus infection, glycoproteins attach to a host epithelial cell. As a result, the virus is engulfed. RNA and proteins are made and assembled into new virions.

Lytic and lysogenic pathways

Cell death may be immediate or delayed after attachment and penetration by the virus. For example, bacteriophages, viruses that infect bacteria, may or may not kill their host immediately. There are two viral replication strategies; when the virus kills the host cell it is called the lytic cycle , and when the virus does not kill the host but replicates when the host replicates it is called the lysogenic cycle ( [link] ).

viral replication strategies
The two viral reproductive strategies, the lytic cycle and the lysogenic cycle

Lytic cycle

The lytic cycle causes death of the host cell and the term refers to the last stage of the infection when the cell lyses (breaks open) and releases new virions that were produced within the cell. These new virions can infect healthy cells and the cycle is repeated ( [link] ).

So why haven't all the bacteria in the world been destroy by bacteriophages? The answer is natural selection of defense mechanisms by bacteria. Mutations of bacterial surface proteins that are not recognized by a particular phage allow the bacteria to survive by preventing attachment. Without going into detail, bacteria have internal defenses that allow them to cut up viral DNA before it can infect the cell. Then one might ask, why hasn't all the bacteriophages in the world gone extinct by not being able to reproduce. Once again, the answer is natural selection. Viruses mutate to bypass the defense mechanisms of the bacteria. This illustrates that the parasite-host relationship is in a constant evolutionary duel.Similar co-evolutionary strategies characterize the interactions of viruses and animals, or viruses and plants.

Lysogenic cycle

There is another reason why bacteria are not extinct because of bacteriophages. Many bacteriophages do not kill their host but coexist within their host, and when this occurs it is called the lysogenic cycle. After penetration, the viral DNA or RNA can either be incorporated into the host DNA, or the viral genome can be a self-replicating entity. Once this occurs, the viral genome is replicated along with the host cell's DNA, but the virus does not destroy the cell as it does in the lytic cycle ( [link] ). However, at some point the viral genes are turned on and can trigger the virus to enter the lytic cycle and kill the host cell ( [link] ). Cell starvation or cell damage (e.g. from radiation) may trigger a lysogenic infection to turn into a lytic infection thereby killing the host cell. The next generation of viruses, depending on the host cell condition, can use either of the viral replication strategies, lysogenic or lytic, on the next host.

Viruses and disease

Viruses cause a variety of diseases in animals, including humans, ranging from the common cold to potentially fatal illnesses like meningitis ( [link] ). These diseases can be treated by antiviral drugs or by vaccines, but some viruses, such as HIV, are capable of avoiding the immune response and mutating so as to become resistant to antiviral drugs.

The illustration shows an overview of human viral diseases. Viruses that cause encephalitis or meningitis, or inflammation of the brain and surrounding tissues, include measles, arbovirus, rabies, JC virus, and LCM virus. The common cold is caused by rhinovirus, parainfluenza virus, and respiratory syncytial virus. Eye infections are caused by herpesvirus, adenovirus, and cytomegalovirus. Pharyngitis, or inflammation of the pharynx, is caused by adenovirus, Epstein-Barr virus, and cytomegalovirus. Parotitis, or inflammation of the parotid glands, is caused by mumps virus. Gingivostomatitis, or inflammation of the oral mucosa, is caused by herpes simplex type I virus. Pneumonia is caused by influenza virus types A and B, parainfluenza virus, respiratory syncytial virus, adenovirus, and SARS coronavirus. Cardiovascular problems are caused by coxsackie B virus. Hepatitis is caused by hepatitis virus types A, B, C, D, and E. Myelitis is caused by poliovirus and HLTV-1. Skin infections are caused by varicella-zoster virus, human herpesvirus 6, smallpox, molluscum contagiosum, human papillomavirus, parvovirus B19, rubella, measles, and coxsackie A virus. Gastroenteritis, or digestive disease, is caused by adenovirus, rotavirus, norovirus, astrovirus, and coronavirus. Sexually transmitted diseases are caused by herpes simplex type 2, human papillomavirus, and HIV. Pancreatitis B is caused by coxsackie B virus.
Viruses are the cause of dozens of ailments in humans, ranging from mild illnesses to serious diseases. (credit: modification of work by Mikael Häggström)

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Principles of biology. OpenStax CNX. Aug 09, 2016 Download for free at http://legacy.cnx.org/content/col11569/1.25
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Principles of biology' conversation and receive update notifications?

Ask