<< Chapter < Page Chapter >> Page >
An introduction to taxonomy and phylogeny

Taxonomy and phylogeny

Birds in a way resemble fishes. For birds have their wings in the upper part of their bodies, and fishes have two fins in the front part of their bodies. Birds have feet on their under part, and most fishes have a second pair of fins in their under part…”
– Aristotle (384-322 B.C), De Incessu Animalium .

Introduction – differences and similarities

Observations and speculations about the similarities and differences of the life forms around us clearly have a long history. Aristotle’s ancient musings about animals pre-date the concept of homologous and analogous structures, which we discussed in the last chapter, but his insights are accurate today. Aristotle was the first to write about his attempts to classify animals into groups, and his classification scheme was the standard for many centuries. Attempts to refine the classification of animals (and other living things) continue even today, as you will see. Those classification schemes, throughout the centuries, have used many different criteria for separating living things into different groups. “How is this thing different from this other thing?” has been the focus of many scientific endeavors. But, as Aristotle recognized in the passage above, it is just as important to ask about the similarities, and not just focus on the differences.

We use the words taxonomy or systematics to describe the activity of classifying and naming living things. There are many ways to divide living things into groups; the ability to recognize and classify things is a deeply-seated and oft-used human activity. Some of these schemes are based on habitat, e.g. water-dwelling creatures vs. land-dwelling creatures or aerial-dwelling creatures. Others are based on internal characters. For example, Aristotle’s two most basic groups were those with blood and those without blood, a grouping scheme that coincidentally neatly separates most of the vertebrates from most of the invertebrates. But most schemes have been based on morphology , such as size, shape, number and proportion of appendages, etc. This sort of classification seems to be easy enough to do, but, as you will see later in this chapter, it can lead to some interesting mistakes.

Finally, it is important to understand that all classification schemes should be viewed as simply being hypotheses . Like any hypothesis, a classification scheme should change, or even be discarded, if new observations contradict the predictions of the hypothesis. This leads to some frustration on the part of some students, because (again) they would like to have some certainty about what they are learning. But a science where everything is certain would be a dead and dusty science, which certainly doesn’t describe the state of taxonomy today, or tomorrow.

A brief history of taxonomy

Taxonomic information for the Bald Eagle (photo by D. A. Rintoul)

After Aristotle, there was not a lot of progress in taxonomy for many centuries. In fact, there may have been negative progress for some of that time, as Aristotle’s system was brushed aside or forgotten. But in the 1700’s a Swedish biologist who went by the Latin name Carolus Linneaus developed a system of biological classification that still underlies the system used today. His big contribution to the discipline was to introduce the concept of using two names to describe the smallest unit of classification, the species . In the Linnean system, every organism has a unique “scientific name”, consisting of a specific epithet preceded by a name for the next highest level of classification, the genus (plural = genera). Higher levels of classification included, in order above the genus, family, order, class, phylum, and kingdom. Subsequently another top level, the domain, was added to this hierarchy, giving us the classification scheme shown above ( [link] ). This bald eagle has the scientific name Haliaetus leucocephalus . There are 7 other members of the genus Haliaetus. The genus is placed in the Family Accipitridae, in the Order Accipitriformes, in the class Aves, in the Phylum Chordata, in the Kingdom Animalia, and in the Domain Eukarya. Biologists refer to a group of organisms, at any level, as a taxon (shorthand for taxonomic unit, plural = taxa). Thus a species is a taxon, as is a Genus, or a Family, or an Order, etc.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Principles of biology. OpenStax CNX. Aug 09, 2016 Download for free at http://legacy.cnx.org/content/col11569/1.25
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Principles of biology' conversation and receive update notifications?

Ask