<< Chapter < Page Chapter >> Page >

Probability density function.

If x i MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaaWcbaGaamyAaaqabaaaaa@3800@ is a continuous random variable, the concept of a probability distribution is replaced by a probility density function (pdf). A function, f ( x ) , MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqadaqaaiaadIhaaiaawIcacaGLPaaacaGGSaaaaa@3A0A@ is a pdf for the continuous random variable x if and only if (1) f ( x ) 0 MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqadaqaaiaadIhaaiaawIcacaGLPaaacqGHLjYScaaIWaaaaa@3BDA@ for - < x < ; MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaac2cacqGHEisPcqGH8aapcaWG4bGaeyipaWJaeyOhIuQaai4oaaaa@3D40@ (2) f ( x ) d x = 1 ; MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaapehabaGaamOzamaabmaabaGaamiEaaGaayjkaiaawMcaaiaadsgacaWG4baaleaacqGHsislcqGHEisPaeaacqGHEisPa0Gaey4kIipakiabg2da9iaaigdacaGG7aaaaa@4402@ and (3) f ( x ) MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqadaqaaiaadIhaaiaawIcacaGLPaaaaaa@395A@ has a finite number of discontinuities. By definition Pr ( a x b ) = a b f ( x ) d x . MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiGaccfacaGGYbWaaeWaaeaacaWGHbGaeyizImQaamiEaiabgsMiJkaadkgaaiaawIcacaGLPaaacqGH9aqpdaWdXbqaaiaadAgadaqadaqaaiaadIhaaiaawIcacaGLPaaacaWGKbGaamiEaaWcbaGaamyyaaqaaiaadkgaa0Gaey4kIipakiaac6caaaa@4AC1@ Example 5 offers an example of a pfd.

Probability distribution function for a continuous random variable.

Graph of a pdf.
The red line is the pdf for the random variable x . The shaded in area under the pdf is equal to the probability that x falls between a and b . The total area under the pdf is equal to 1.

Cumulative distribution function (cdf).

The cumulative distribution function is given by F ( x ) = Pr ( X x ) . MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaqadaqaaiaadIhaaiaawIcacaGLPaaacqGH9aqpciGGqbGaaiOCamaabmaabaGaamiwaiabgsMiJkaadIhaaiaawIcacaGLPaaacaGGUaaaaa@41D6@ For a discrete variable the cdf is F ( x w ) = i = 1 w f ( x i ) . MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaqadaqaaiaadIhadaWgaaWcbaGaam4DaaqabaaakiaawIcacaGLPaaacqGH9aqpdaaeWbqaaiaadAgadaqadaqaaiaadIhadaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaaaSqaaiaadMgacqGH9aqpcaaIXaaabaGaam4DaaqdcqGHris5aOGaaiOlaaaa@46B0@ For a continuous distribution, the cdf is F ( x ) = x f ( w ) d w . MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaqadaqaaiaadIhaaiaawIcacaGLPaaacqGH9aqpdaWdXbqaaiaadAgadaqadaqaaiaadEhaaiaawIcacaGLPaaacaWGKbGaam4Daiaac6caaSqaaiabgkHiTiabg6HiLcqaaiaadIhaa0Gaey4kIipaaaa@460B@ Example 6 illustrates the calculation of the cumulative distribution function for a continuous random variable.

The cumulative distributon function.

Let f ( x ) = x 2 MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqadaqaaiaadIhaaiaawIcacaGLPaaacqGH9aqpcaWG4bWaaWbaaSqabeaacaaIYaaaaaaa@3C46@ be the pdf for the random variable x defined between 0 and 1. The cumulative distribution function for any a is F ( a ) = 0 a x 2 d x = 1 3 x 3 | 0 a = a 3 3 . MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaqadaqaaiaadggaaiaawIcacaGLPaaacqGH9aqpdaWdXbqaaiaadIhadaahaaWcbeqaaiaaikdaaaGccaWGKbGaamiEaaWcbaGaaGimaaqaaiaadggaa0Gaey4kIipakiabg2da9maalaaabaGaaGymaaqaaiaaiodaaaWaaqGaaeaacaWG4bWaaWbaaSqabeaacaaIZaaaaaGccaGLiWoadaqhaaWcbaGaaGimaaqaaiaadggaaaGccqGH9aqpdaWcaaqaaiaadggadaahaaWcbeqaaiaaiodaaaaakeaacaaIZaaaaiaac6caaaa@4E5D@

Mathematical expectation

Mathematical expectation for a function.

The mathematical expectation of the function g ( x ) MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEgadaqadaqaaiaadIhaaiaawIcacaGLPaaaaaa@395B@ is E ( g ( x ) ) = x g ( x ) f ( x ) d x MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaqadaqaaiaadEgadaqadaqaaiaadIhaaiaawIcacaGLPaaaaiaawIcacaGLPaaacqGH9aqpdaWdrbqaaiaadEgadaqadaqaaiaadIhaaiaawIcacaGLPaaacaWGMbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaamizaiaadIhaaSqaaiaadIhaaeqaniabgUIiYdaaaa@48C4@ where x is a random variable. Example 7 shows the calculation of the expected value of a function.

Expected value calculation.

Let f ( x ) = x a MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqadaqaaiaadIhaaiaawIcacaGLPaaacqGH9aqpcaWG4bWaaWbaaSqabeaacaWGHbaaaaaa@3C70@ be a pdf for 0 x 1 MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaicdacqGHKjYOcaWG4bGaeyizImQaaGymaaaa@3BC5@ and a > 0. MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggacqGH+aGpcaaIWaGaaiOlaaaa@3943@ Let g ( x ) = x 3 . MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEgadaqadaqaaiaadIhaaiaawIcacaGLPaaacqGH9aqpcaWG4bWaaWbaaSqabeaacaaIZaaaaOGaaiOlaaaa@3D04@ We can calculate E [ g ( x ) ] = 0 1 ( x 3 ) x a d x = 0 1 x a + 3 d x = 1 a + 4 x a + 4 | 0 1 = 1 a + 4 . MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaWadaqaaiaadEgadaqadaqaaiaadIhaaiaawIcacaGLPaaaaiaawUfacaGLDbaacqGH9aqpdaWdXbqaamaabmaabaGaamiEamaaCaaaleqabaGaaG4maaaaaOGaayjkaiaawMcaaiaadIhadaahaaWcbeqaaiaadggaaaGccaWGKbGaamiEaaWcbaGaaGimaaqaaiaaigdaa0Gaey4kIipakiabg2da9maapehabaGaamiEamaaCaaaleqabaGaamyyaiabgUcaRiaaiodaaaGccaWGKbGaamiEaaWcbaGaaGimaaqaaiaaigdaa0Gaey4kIipakiabg2da9maalaaabaGaaGymaaqaaiaadggacqGHRaWkcaaI0aaaamaaeiaabaGaamiEamaaCaaaleqabaGaamyyaiabgUcaRiaaisdaaaaakiaawIa7amaaDaaaleaacaaIWaaabaGaaGymaaaakiabg2da9maalaaabaGaaGymaaqaaiaadggacqGHRaWkcaaI0aaaaiaac6caaaa@6368@

The mean of a distribution.

The population mean, μ , MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTjaacYcaaaa@384F@ of a random variable, x, with a pdf of f ( x ) MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqadaqaaiaadIhaaiaawIcacaGLPaaaaaa@395A@ is defined to be the expected value of x: μ = E ( x ) = x f ( x ) d x . MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTjabg2da9iaadweadaqadaqaaiaadIhaaiaawIcacaGLPaaacqGH9aqpdaWdbaqaaiaadIhacaWGMbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaamizaiaadIhacaGGUaaaleqabeqdcqGHRiI8aaaa@45FC@ Example 8 illustrates the calculation of the population mean.

Calculation of the population mean.

Assume we have the same pdf used in Example 7. The population mean for this distribution is μ = E [ x ] = 0 1 ( x ) x a d x = 0 1 x a + 1 d x = 1 a + 2 x a + 2 | 0 1 = 1 a + 2 . MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTjabg2da9iaadweadaWadaqaaiaadIhaaiaawUfacaGLDbaacqGH9aqpdaWdXbqaamaabmaabaGaamiEaaGaayjkaiaawMcaaiaadIhadaahaaWcbeqaaiaadggaaaGccaWGKbGaamiEaaWcbaGaaGimaaqaaiaaigdaa0Gaey4kIipakiabg2da9maapehabaGaamiEamaaCaaaleqabaGaamyyaiabgUcaRiaaigdaaaGccaWGKbGaamiEaaWcbaGaaGimaaqaaiaaigdaa0Gaey4kIipakiabg2da9maalaaabaGaaGymaaqaaiaadggacqGHRaWkcaaIYaaaamaaeiaabaGaamiEamaaCaaaleqabaGaamyyaiabgUcaRiaaikdaaaaakiaawIa7amaaDaaaleaacaaIWaaabaGaaGymaaaakiabg2da9maalaaabaGaaGymaaqaaiaadggacqGHRaWkcaaIYaaaaiaac6caaaa@62B3@

The variance of a distribution.

The population variance, σ 2 , MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo8aZnaaCaaaleqabaGaaGOmaaaakiaacYcaaaa@394F@ of a distribution is σ 2 = E [ ( x μ ) 2 ] . MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo8aZnaaCaaaleqabaGaaGOmaaaakiabg2da9iaadweadaWadaqaamaabmaabaGaamiEaiabgkHiTiabeY7aTbGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaOGaay5waiaaw2faaiaac6caaaa@432F@ Example 9 shows a shortcut way to calculate the population variance.

Calculation of the population variance using the expected value operator.

Define the variance operator, V , to be:

V ( x ) = E [ ( x μ ) 2 ] . MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAfadaqadaqaaiaadIhaaiaawIcacaGLPaaacqGH9aqpcaWGfbWaamWaaeaadaqadaqaaiaadIhacqGHsislcqaH8oqBaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaakiaawUfacaGLDbaacaGGUaaaaa@43DA@

Then,

E [ ( x μ ) 2 ] = ( x μ ) 2 f ( x ) d x . MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaWadaqaamaabmaabaGaamiEaiabgkHiTiabeY7aTbGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaOGaay5waiaaw2faaiabg2da9maapeaabaWaaeWaaeaacaWG4bGaeyOeI0IaeqiVd0gacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaamOzamaabmaabaGaamiEaaGaayjkaiaawMcaaiaadsgacaWG4baaleqabeqdcqGHRiI8aOGaaiOlaaaa@4DF1@

Squaring the term in the integral gives: ( x 2 2 μ x + μ 2 ) f ( x ) d x = E ( x 2 2 μ x + μ 2 ) . MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaapeaabaWaaeWaaeaacaWG4bWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGOmaiabeY7aTjaadIhacqGHRaWkcqaH8oqBdaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaacaWGMbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaamizaiaadIhaaSqabeqaniabgUIiYdGccqGH9aqpcaWGfbWaaeWaaeaacaWG4bWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGOmaiabeY7aTjaadIhacqGHRaWkcqaH8oqBdaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaacaGGUaaaaa@5687@

Expand of the left-hand-side of this equality:

x 2 f ( x ) d x 2 μ x f ( x ) d x + μ 2 f ( x ) d x = E ( x 2 ) E ( 2 μ x ) + E ( μ 2 ) . MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaapeaabaGaamiEamaaCaaaleqabaGaaGOmaaaakiaadAgadaqadaqaaiaadIhaaiaawIcacaGLPaaacaWGKbGaamiEaaWcbeqab0Gaey4kIipakiabgkHiTmaapeaabaGaaGOmaiabeY7aTjaadIhacaWGMbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaamizaiaadIhacqGHRaWkaSqabeqaniabgUIiYdGcdaWdbaqaaiabeY7aTnaaCaaaleqabaGaaGOmaaaakiaadAgadaqadaqaaiaadIhaaiaawIcacaGLPaaacaWGKbGaamiEaaWcbeqab0Gaey4kIipakiabg2da9iaadweadaqadaqaaiaadIhadaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaacqGHsislcaWGfbWaaeWaaeaacaaIYaGaeqiVd0MaamiEaaGaayjkaiaawMcaaiabgUcaRiaadweadaqadaqaaiabeY7aTnaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaiaac6caaaa@685C@

Thus, we have established that:

E [ ( x μ ) 2 ] = E ( x 2 ) E ( 2 μ x ) + E ( μ 2 ) . MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaWadaqaamaabmaabaGaamiEaiabgkHiTiabeY7aTbGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaOGaay5waiaaw2faaiabg2da9iaadweadaqadaqaaiaadIhadaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaacqGHsislcaWGfbWaaeWaaeaacaaIYaGaeqiVd0MaamiEaaGaayjkaiaawMcaaiabgUcaRiaadweadaqadaqaaiabeY7aTnaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaiaac6caaaa@5149@

Evaluating the last two terms gives

E ( 2 μ x ) = 2 μ x f ( x ) d x = 2 μ x d x = 2 μ 2 MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaqadaqaaiaaikdacqaH8oqBcaWG4baacaGLOaGaayzkaaGaeyypa0Zaa8qaaeaacaaIYaGaeqiVd0MaamiEaiaadAgadaqadaqaaiaadIhaaiaawIcacaGLPaaacaWGKbGaamiEaaWcbeqab0Gaey4kIipakiabg2da9iaaikdacqaH8oqBdaWdbaqaaiaadIhaaSqabeqaniabgUIiYdGccaWGKbGaamiEaiabg2da9iaaikdacqaH8oqBdaahaaWcbeqaaiaaikdaaaaaaa@543D@

and

E ( μ 2 ) = μ 2 f ( x ) d x MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaqadaqaaiabeY7aTnaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaiabg2da9maapeaabaGaeqiVd02aaWbaaSqabeaacaaIYaaaaOGaamOzamaabmaabaGaamiEaaGaayjkaiaawMcaaiaadsgacaWG4baaleqabeqdcqGHRiI8aaaa@45E6@

or, since f ( x ) d x = 1 , MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaapeaabaGaamOzamaabmaabaGaamiEaaGaayjkaiaawMcaaiaadsgacaWG4baaleqabeqdcqGHRiI8aOGaeyypa0JaaGymaiaacYcaaaa@3FB6@ that E ( μ 2 ) = μ 2 . MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaqadaqaaiabeY7aTnaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaiabg2da9iabeY7aTnaaCaaaleqabaGaaGOmaaaakiaac6caaaa@3F46@ Thus, E [ ( x μ ) 2 ] = E ( x 2 ) 2 μ 2 + μ 2 MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaWadaqaamaabmaabaGaamiEaiabgkHiTiabeY7aTbGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaOGaay5waiaaw2faaiabg2da9iaadweadaqadaqaaiaadIhadaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaacqGHsislcaaIYaGaeqiVd02aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaeqiVd02aaWbaaSqabeaacaaIYaaaaaaa@4BDD@ or

E [ ( x μ ) 2 ] = E ( x 2 ) μ 2 . MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaWadaqaamaabmaabaGaamiEaiabgkHiTiabeY7aTbGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaOGaay5waiaaw2faaiabg2da9iaadweadaqadaqaaiaadIhadaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaacqGHsislcqaH8oqBdaahaaWcbeqaaiaaikdaaaGccaGGUaaaaa@4852@

For example, in Example 8 we found that μ = 1 a + 2 . MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTjabg2da9maalaaabaGaaGymaaqaaiaadggacqGHRaWkcaaIYaaaaiaac6caaaa@3CA6@ The expected value of x 2 MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaahaaWcbeqaaiaaikdaaaaaaa@37CF@ is

E [ x 2 ] = 0 1 ( x 2 ) x a d x = 0 1 x a + 2 d x = 1 a + 3 x a + 3 | 0 1 = 1 a + 3 . MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaWadaqaaiaadIhadaahaaWcbeqaaiaaikdaaaaakiaawUfacaGLDbaacqGH9aqpdaWdXbqaamaabmaabaGaamiEamaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaiaadIhadaahaaWcbeqaaiaadggaaaGccaWGKbGaamiEaaWcbaGaaGimaaqaaiaaigdaa0Gaey4kIipakiabg2da9maapehabaGaamiEamaaCaaaleqabaGaamyyaiabgUcaRiaaikdaaaGccaWGKbGaamiEaaWcbaGaaGimaaqaaiaaigdaa0Gaey4kIipakiabg2da9maalaaabaGaaGymaaqaaiaadggacqGHRaWkcaaIZaaaamaaeiaabaGaamiEamaaCaaaleqabaGaamyyaiabgUcaRiaaiodaaaaakiaawIa7amaaDaaaleaacaaIWaaabaGaaGymaaaakiabg2da9maalaaabaGaaGymaaqaaiaadggacqGHRaWkcaaIZaaaaiaac6caaaa@61E1@

Thus, the variance of the distribution is

V ( x ) = 1 a + 3 ( 1 a + 2 ) 2 MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAfadaqadaqaaiaadIhaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiaaigdaaeaacaWGHbGaey4kaSIaaG4maaaacqGHsisldaqadaqaamaalaaabaGaaGymaaqaaiaadggacqGHRaWkcaaIYaaaaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaaa@444E@

or V ( x ) = ( a + 2 ) 2 ( a + 3 ) ( a + 3 ) ( a + 2 ) 2 = a 2 + 3 a + 1 ( a + 3 ) ( a + 2 ) 2 . MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAfadaqadaqaaiaadIhaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaamaabmaabaGaamyyaiabgUcaRiaaikdaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccqGHsisldaqadaqaaiaadggacqGHRaWkcaaIZaaacaGLOaGaayzkaaaabaWaaeWaaeaacaWGHbGaey4kaSIaaG4maaGaayjkaiaawMcaamaabmaabaGaamyyaiabgUcaRiaaikdaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaaaOGaeyypa0ZaaSaaaeaacaWGHbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaG4maiaadggacqGHRaWkcaaIXaaabaWaaeWaaeaacaWGHbGaey4kaSIaaG4maaGaayjkaiaawMcaamaabmaabaGaamyyaiabgUcaRiaaikdaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaaaOGaaiOlaaaa@5E3A@

Expected value operation rules.

As shown in Example 9, the expected value operation allows several linear operations. Let a and b be a non-stochastic variables and x be a random variable. Then we have

Questions & Answers

what is defense mechanism
Chinaza Reply
what is defense mechanisms
Chinaza
I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Econometrics for honors students. OpenStax CNX. Jul 20, 2010 Download for free at http://cnx.org/content/col11208/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Econometrics for honors students' conversation and receive update notifications?

Ask