<< Chapter < Page Chapter >> Page >

Introduction

This chapter gives you an opportunity to build on what you have learned in previous grades about data handling and probability. The work done will be mostly of a practical nature. Through problem solving and activities, you will end up mastering further methods of collecting, organising, displaying and analysing data. You will also learn how to interpret data, and not always to accept the data at face value, because data is sometimes misused and abused in order to try to falsely prove or support a viewpoint. Measures of central tendency (mean, median and mode) and dispersion (range, percentiles, quartiles, inter-quartile, semi-inter-quartile range, variance and standard deviation) will be investigated. Of course, the activities involving probability will be familiar to most of you - for example, you may have played dice or card games even before you came to school. Your basic understanding of probability and chance gained so far will be deepened to enable you to come to a better understanding of how chance and uncertainty can be measured and understood.

Standard deviation and variance

The measures of central tendency (mean, median and mode) and measures of dispersion (quartiles, percentiles, ranges) provide information on the data values at the centre of the data set and provide information on the spread of the data. The information on the spread of the data is however based on data values at specific points in the data set, e.g. the end points for range and data points that divide the data set into 4 equal groups for the quartiles. The behaviour of the entire data set is therefore not examined.

A method of determining the spread of data is by calculating a measure of the possible distances between the data and the mean. The two important measures that are used are called the variance and the standard deviation of the data set.

Variance

The variance of a data set is the average squared distance between the mean of the data set and each data value. An example of what this means is shown in [link] . The graph represents the results of 100 tosses of a fair coin, which resulted in 45 heads and 55 tails. The mean of the results is 50. The squared distance between the heads value and the mean is ( 45 - 50 ) 2 = 25 and the squared distance between the tails value and the mean is ( 55 - 50 ) 2 = 25 . The average of these two squared distances gives the variance, which is 1 2 ( 25 + 25 ) = 25 .

Population variance

Let the population consist of n elements { x 1 , x 2 , ... , x n } , with mean x ¯ (read as "x bar"). The variance of the population, denoted by σ 2 , is the average of the square of the distance of each data value from the mean value.

σ 2 = ( ( x - x ¯ ) ) 2 n .

Since the population variance is squared, it is not directly comparable with the mean and the data themselves.

Sample variance

Let the sample consist of the n elements { x 1 , x 2 , ... , x n } , taken from the population, with mean x ¯ . The variance of the sample, denoted by s 2 , is the average of the squared deviations from the sample mean:

s 2 = ( x - x ¯ ) 2 n - 1 .

Since the sample variance is squared, it is also not directly comparable with the mean and the data themselves.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Siyavula textbooks: grade 11 maths. OpenStax CNX. Aug 03, 2011 Download for free at http://cnx.org/content/col11243/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Siyavula textbooks: grade 11 maths' conversation and receive update notifications?

Ask