<< Chapter < Page Chapter >> Page >
This chapter is devoted to a special collection of methods, measurements, tools, indicators, and indices that are used to illustrate the meaning of sustainability, to assess the comparative sustainability among options, designs, or decisions, and to measure progress toward achieving the goals of sustainability over time.

Introduction

“What gets measured gets done” is an oft-quoted saying (attributed to many individuals) that attempts to capture the essential role of quantification in order to understand a system, solve a problem, advance a cause, or establish a policy. Throughout this text a wide variety of measurements are put forth, cited, and discussed in connection with particular concepts including climate change, economics, social well-being, engineering efficiency, and consumer habits. This chapter is devoted to a special collection of methods, measurements, tools, indicators, and indices that are used to assess the comparative sustainability among potential and often competing options, designs, or decisions, and to measure progress toward achieving the goals of sustainability over time.

The chapter begins in the Module Life Cycle Assessment with a brief discussion of industrial ecology, an emerging science that focuses on understanding material and energy flows to and through different kinds of human-created systems. This kind of understanding is essential for framing problems that need to be solved in a holistic way. Industrial ecologists study such topics as recycling and reuse of materials, energy efficiency, organizational structures, supply chains, the social impacts of decisions, and the economics of product development. It has been termed “the science of sustainability” ( Graedel, 2000 ).

One of the principal tools of industrial ecology which is discussed in this chapter is life cycle assessment (LCA), a comprehensive set of procedures for quantifying the impacts associated with the energy and resources needed to make and deliver a product or service. LCA’s are carried out for two main reasons: (a) to analyze all the steps in a product chain and see which use the greatest amount of energy and materials or produce the most waste, and (b) to enable comparisons among alternative products or supply chains and to see which one create the least environmental impact. Inherent in the concept of LCA is the notion of tradeoffs – the recognition that in a finite world choosing one product, pathway, or way of living has consequences for environmental and social well-being. Of course choices must be made, but the goal of quantifying the implications of our actions as holistically as possible is to avoid consequences that are “unintended.”

Although life cycle assessment grew out of the needs of industry to better design products and understand the implications of their decisions, the systemic manner of framing problems upon which LCA is based has permeated a wide variety of fields, stimulating what might be termed “life cycle thinking” in each of them. The Subcollection Derivative Life Cycle Concepts in this chapter contains modules devoted to presentations of a number of ways of expressing the impacts of humans on the environment. These are derived from life cycle principles and are drawn from the fields of ecology, thermodynamics, and environmental science. They include “ footprinting ” and several sustainability indicators , all of which quantify human impacts in terms of resource consumption and waste production over an extended geographic range and/or over timeframes that go beyond the immediate. A case study on the UN Millennium Development Goals Indicator presents a comprehensive approach for assessing not only environmental sustainability, but also hunger and poverty, education, gender equity, infant mortality, maternal health, disease, and global partnerships – all elements of sustainable development made clear in the Brundtland report. Finally, this chapter concludes with a module about sustainability and business .

References

Graedel, T.E. (2000). The Evolution of Industrial Ecology. Environmental Science and Technology , 34, 28A-31A. doi: 10.1021/es003039c

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Sustainability: a comprehensive foundation. OpenStax CNX. Nov 11, 2013 Download for free at http://legacy.cnx.org/content/col11325/1.43
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Sustainability: a comprehensive foundation' conversation and receive update notifications?

Ask