<< Chapter < Page Chapter >> Page >
This module describes the circular convolution algorithm and an alternative algorithm

Introduction

This module relates circular convolution of periodic signals in one domain to multiplication in the other domain.

You should be familiar with Discrete-Time Convolution , which tells us that given two discrete-time signals x n , the system's input, and h n , the system's response, we define the output of the system as

y n x n h n k x k h n k
When we are given two DFTs (finite-length sequences usually oflength N ), we cannot just multiply them together as we do in the above convolutionformula, often referred to as linear convolution . Because the DFTs are periodic, they have nonzero values for n N and thus the multiplication of these two DFTs will be nonzero for n N . We need to define a new type of convolution operation that will result in our convolved signal being zerooutside of the range n 0 1 N 1 . This idea led to the development of circular convolution , also called cyclic or periodic convolution.

Signal circular convolution

Given a signal f n with Fourier coefficients c k and a signal g n with Fourier coefficients d k , we can define a new signal, v n , where v n f n g n We find that the Fourier Series representation of v n , a k , is such that a k c k d k . f n g n is the circular convolution of two periodic signals and is equivalent to the convolution over one interval, i.e. f n g n n 0 N η 0 N f η g n η .

Circular convolution in the time domain is equivalent to multiplication of the Fourier coefficients.
This is proved as follows
a k 1 N n 0 N v n j ω 0 k n 1 N 2 n 0 N η 0 N f η g n η ω j 0 k n 1 N η 0 N f η 1 N n 0 N g n η j ω 0 k n ν ν n η 1 N η 0 N f η 1 N ν η N η g ν j ω 0 ν η 1 N η 0 N f η 1 N ν η N η g ν j ω 0 k ν j ω 0 k η 1 N η 0 N f η d k j ω 0 k η d k 1 N η 0 N f η j ω 0 k η c k d k

Circular convolution formula

What happens when we multiply two DFT's together, where Y k is the DFT of y n ?

Y k F k H k
when 0 k N 1

Using the DFT synthesis formula for y n

y n 1 N k 0 N 1 F k H k j 2 N k n

And then applying the analysis formula F k m 0 N 1 f m j 2 N k n

y n 1 N k 0 N 1 m 0 N 1 f m j 2 N k n H k j 2 N k n m 0 N 1 f m 1 N k 0 N 1 H k j 2 N k n m
where we can reduce the second summation found in the above equation into h ( ( n m ) ) N 1 N k 0 N 1 H k j 2 N k n m y n m 0 N 1 f m h ( ( n m ) ) N which equals circular convolution! When we have 0 n N 1 in the above, then we get:
y n f n h n
The notation represents cyclic convolution "mod N".

Alternative convolution formula

    Alternative circular convolution algorithm

  • Step 1: Calculate the DFT of f n which yields F k and calculate the DFT of h n which yields H k .
  • Step 2: Pointwise multiply Y k F k H k
  • Step 3: Inverse DFT Y k which yields y n

Seems like a roundabout way of doing things, but it turns out that there are extremely fast ways to calculate the DFT of a sequence.

To circularily convolve 2 N -point sequences: y n m 0 N 1 f m h ( ( n m ) ) N For each n : N multiples, N 1 additions

N points implies N 2 multiplications, N N 1 additions implies O N 2 complexity.

Steps for circular convolution

We can picture periodic sequences as having discrete points on a circle as the domain

Shifting by m , f n m , corresponds to rotating the cylinder m notches ACW (counter clockwise). For m -2 , we get a shift equal to that in the following illustration:

for m -2

To cyclic shift we follow these steps:

1) Write f n on a cylinder, ACW

N 8

2) To cyclic shift by m , spin cylinder m spots ACW f n f (( n + m )) N

m -3

Notes on circular shifting

f (( n + N )) N f n Spinning N spots is the same as spinning all the way around, or not spinning at all.

f (( n + N )) N f (( n - ( N - m ) )) N Shifting ACW m is equivalent to shifting CW N m

f (( - n )) N The above expression, simply writes the values of f n clockwise.

f n
f (( - n )) N

Convolve (n = 4)

Two discrete-time signals to be convolved.

  • h ( ( m ) ) N

Multiply f m and sum to yield: y 0 3

  • h ( ( 1 m ) ) N

Multiply f m and sum to yield: y 1 5

  • h ( ( 2 m ) ) N

Multiply f m and sum to yield: y 2 3

  • h ( ( 3 m ) ) N

Multiply f m and sum to yield: y 3 1

Got questions? Get instant answers now!

Exercise

Take a look at a square pulse with a period of T.

For this signal c k 1 N k 0 1 2 2 k 2 k

Take a look at a triangle pulse train with a period of T.

This signal is created by circularly convolving the square pulse with itself. The Fourier coefficients for this signal are a k c k 2 1 4 2 k 2 2 k 2

Find the Fourier coefficients of the signal that is created when the square pulse and the triangle pulse are convolved.

a k = undefined k = 0 1 8 s i n 3 [ π 2 k ] [ π 2 k ] 3 otherwise

Got questions? Get instant answers now!

Circular shifts and the dft

Circular shifts and dft

If f n DFT F k then f (( n - m )) N DFT 2 N k m F k ( i.e. circular shift in time domain = phase shift in DFT)

f n 1 N k 0 N 1 F k 2 N k n
so phase shifting the DFT
f n 1 N k 0 N 1 F k 2 N k n 2 N k n 1 N k 0 N 1 F k 2 N k n m f (( n - m )) N

Circular convolution demonstration

circularshiftsDemo
Interact (when online) with a Mathematica CDF demonstrating Circular Shifts.

Conclusion

Circular convolution in the time domain is equivalent to multiplication of the Fourier coefficients in the frequency domain.

Questions & Answers

what is defense mechanism
Chinaza Reply
what is defense mechanisms
Chinaza
I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Signals and systems. OpenStax CNX. Aug 14, 2014 Download for free at http://legacy.cnx.org/content/col10064/1.15
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Signals and systems' conversation and receive update notifications?

Ask