<< Chapter < Page Chapter >> Page >

( x - 3 ) · 4 x - 9 x 2 - 6 x + 9 . ( x - 3 ) 1 · 4 x - 9 ( x - 3 ) ( x - 3 ) 4 x - 9 x - 3

- x 2 - 3 x - 2 x 2 + 8 x + 15 · 4 x + 20 x 2 + 2 x . Factor –1 from the first numerator . - ( x 2 + 3 x + 2 ) x 2 + 8 x + 15 · 4 x + 20 x 2 + 2 x Factor . - ( x + 1 ) ( x + 2 ) ( x + 3 ) ( x + 5 ) · 4 ( x + 5 ) x ( x + 2 ) Multiply . - 4 ( x + 1 ) x ( x + 3 ) = - 4 x - 1 x ( x + 3 ) or - 4 x - 1 x 2 + 3 x

Practice set a

Perform each multiplication.

5 3 · 6 7

10 7

a 3 b 2 c 2 · c 5 a 5

c 3 a 2 b 2

y - 1 y 2 + 1 · y + 1 y 2 - 1

1 y 2 + 1

x 2 - x - 12 x 2 + 7 x + 6 · x 2 - 4 x - 5 x 2 - 9 x + 20

x + 3 x + 6

x 2 + 6 x + 8 x 2 - 6 x + 8 · x 2 - 2 x - 8 x 2 + 2 x - 8

( x + 2 ) 2 ( x - 2 ) 2

Division of rational expressions

To divide one rational expression by another, we first invert the divisor then multiply the two expressions. Symbolically, if we let P , Q , R , and S represent polynomials, we can write

P Q ÷ R S = P Q · S R = P · S Q · R

Sample set b

Perform the following divisions.

6 x 2 5 a ÷ 2 x 10 a 3 . Invert the divisor and multiply . 6 3 x 2 5 a · 10 2 a 3 2 2 x = 3 x · 2 a 2 1 = 6 a 2 x

x 2 + 3 x - 10 2 x - 2 ÷ x 2 + 9 x + 20 x 2 + 3 x - 4 Invert and multiply . x 2 + 3 x - 10 2 x - 2 · x 2 + 3 x - 4 x 2 + 9 x + 20 Factor . ( x + 5 ) ( x - 2 ) 2 ( x - 1 ) · ( x + 4 ) ( x - 1 ) ( x + 5 ) ( x + 4 ) x - 2 2

( 4 x + 7 ) ÷ 12 x + 21 x - 2 . Write  4 x + 7  as  4 x + 7 1 . 4 x + 7 1 ÷ 12 x + 21 x - 2 Invert and multiply . 4 x + 7 1 · x - 2 12 x + 21 Factor . 4 x + 7 1 · x - 2 3 ( 4 x + 7 ) = x - 2 3

Practice set b

Perform each division.

8 m 2 n 3 a 5 b 2 ÷ 2 m 15 a 7 b 2

20 a 2 m n

x 2 - 4 x 2 + x - 6 ÷ x 2 + x - 2 x 2 + 4 x + 3

x + 1 x - 1

6 a 2 + 17 a + 12 3 a + 2 ÷ ( 2 a + 3 )

3 a + 4 3 a + 2

Excercises

For the following problems, perform the multiplications and divisions.

4 a 3 5 b · 3 b 2 a

6 a 2 5

9 x 4 4 y 3 · 10 y x 2

a b · b a

1

2 x 5 y · 5 y 2 x

12 a 3 7 · 28 15 a

16 a 2 5

39 m 4 16 · 4 13 m 2

18 x 6 7 · 1 4 x 2

9 x 4 14

34 a 6 21 · 42 17 a 5

16 x 6 y 3 15 x 2 · 25 x 4 y

20 x 5 y 2 3

27 a 7 b 4 39 b · 13 a 4 b 2 16 a 5

10 x 2 y 3 7 y 5 · 49 y 15 x 6

14 3 x 4 y

22 m 3 n 4 11 m 6 n · 33 m n 4 m n 3

- 10 p 2 q 7 a 3 b 2 · 21 a 5 b 3 2 p

15 a 2 b p q

- 25 m 4 n 3 14 r 3 s 3 · 21 r s 4 10 m n

9 a ÷ 3 a 2

3 a

10 b 2 ÷ 4 b 3

21 a 4 5 b 2 ÷ 14 a 15 b 3

9 a 3 b 2

42 x 5 16 y 4 ÷ 21 x 4 8 y 3

39 x 2 y 2 55 p 2 ÷ 13 x 3 y 15 p 6

9 p 4 y 11 x

14 m n 3 25 n 6 ÷ 32 m 20 m 2 n 3

12 a 2 b 3 - 5 x y 4 ÷ 6 a 2 15 x 2

6 b 3 x y 4

24 p 3 q 9 m n 3 ÷ 10 p q - 21 n 2

x + 8 x + 1 · x + 2 x + 8

x + 2 x + 1

x + 10 x - 4 · x - 4 x - 1

2 x + 5 x + 8 · x + 8 x - 2

2 x + 5 x 2

y + 2 2 y - 1 · 2 y - 1 y - 2

x - 5 x - 1 ÷ x - 5 4

4 x 1

x x - 4 ÷ 2 x 5 x + 1

a + 2 b a - 1 ÷ 4 a + 8 b 3 a - 3

3 4

6 m + 2 m - 1 ÷ 4 m - 4 m - 1

x 3 · 4 a b x

4 a b x 2

y 4 · 3 x 2 y 2

2 a 5 ÷ 6 a 2 4 b

4 a 3 b 3

16 x 2 y 3 ÷ 10 x y 3

21 m 4 n 2 ÷ 3 m n 2 7 n

49 m 3 n

( x + 8 ) · x + 2 x + 8

( x - 2 ) · x - 1 x - 2

x 1

( a - 6 ) 3 · ( a + 2 ) 2 a - 6

( b + 1 ) 4 · ( b - 7 ) 3 b + 1

( b + 1 ) 3 ( b 7 ) 3

( b 2 + 2 ) 3 · b - 3 ( b 2 + 2 ) 2

( x 3 - 7 ) 4 · x 2 - 1 ( x 3 - 7 ) 2

( x 3 7 ) 2 ( x + 1 ) ( x 1 )

( x - 5 ) ÷ x - 5 x - 2

( y - 2 ) ÷ y - 2 y - 1

( y 1 )

( y + 6 ) 3 ÷ ( y + 6 ) 2 y - 6

( a - 2 b ) 4 ÷ ( a - 2 b ) 2 a + b

( a 2 b ) 2 ( a + b )

x 2 + 3 x + 2 x 2 - 4 x + 3 · x 2 - 2 x - 3 2 x + 2

6 x - 42 x 2 - 2 x - 3 · x 2 - 1 x - 7

6 ( x 1 ) ( x 3 )

3 a + 3 b a 2 - 4 a - 5 ÷ 9 a + 9 b a 2 - 3 a - 10

a 2 - 4 a - 12 a 2 - 9 ÷ a 2 - 5 a - 6 a 2 + 6 a + 9

( a + 2 ) ( a + 3 ) ( a 3 ) ( a + 1 )

b 2 - 5 b + 6 b 2 - b - 2 · b 2 - 2 b - 3 b 2 - 9 b + 20

m 2 - 4 m + 3 m 2 + 5 m - 6 · m 2 + 4 m - 12 m 2 - 5 m + 6

1

r 2 + 7 r + 10 r 2 - 2 r - 8 ÷ r 2 + 6 r + 5 r 2 - 3 r - 4

2 a 2 + 7 a + 3 3 a 2 - 5 a - 2 · a 2 - 5 a + 6 a 2 + 2 a - 3

( 2 a + 1 ) ( a 6 ) ( a + 1 ) ( 3 a + 1 ) ( a 1 ) ( a 2 )

6 x 2 + x - 2 2 x 2 + 7 x - 4 · x 2 + 2 x - 12 3 x 2 - 4 x - 4

x 3 y - x 2 y 2 x 2 y - y 2 · x 2 - y x - x y

x ( x y ) 1 y

4 a 3 b - 4 a 2 b 2 15 a - 10 · 3 a - 2 4 a b - 2 b 2

x + 3 x - 4 · x - 4 x + 1 · x - 2 x + 3

x 2 x + 1

x - 7 x + 8 · x + 1 x - 7 · x + 8 x - 2

2 a - b a + b · a + 3 b a - 5 b · a - 5 b 2 a - b

a + 3 b a + b

3 a ( a + 1 ) 2 a - 5 · 6 ( a - 5 ) 2 5 a + 5 · 15 a + 30 4 a - 20

- 3 a 2 4 b · - 8 b 3 15 a

2 a b 2 5

- 6 x 3 5 y 2 · 20 y - 2 x

- 8 x 2 y 3 - 5 x ÷ 4 - 15 x y

6 x 2 y 4

- 4 a 3 3 b ÷ 2 a 6 b 2

- 3 a - 3 2 a + 2 · a 2 - 3 a + 2 a 2 - 5 a - 6

3 ( a 2 ) ( a 1 ) 2 ( a 6 ) ( a + 1 )

x 2 - x - 2 x 2 - 3 x - 4 · - x 2 + 2 x + 3 - 4 x - 8

- 5 x - 10 x 2 - 4 x + 3 · x 2 + 4 x + 1 x 2 + x - 2

5 ( x 2 + 4 x + 1 ) ( x 3 ) ( x 1 ) 2

- a 2 - 2 a + 15 - 6 a - 12 ÷ a 2 - 2 a - 8 - 2 a - 10

- b 2 - 5 b + 14 3 b - 6 ÷ - b 2 - 9 b - 14 - b + 8

( b 8 ) 3 ( b + 2 )

3 a + 6 4 a - 24 · 6 - a 3 a + 15

4 x + 12 x - 7 · 7 - x 2 x + 2

2 ( x + 3 ) ( x + 1 )

- 2 b - 2 b 2 + b - 6 · - b + 2 b + 5

3 x 2 - 6 x - 9 2 x 2 - 6 x - 4 ÷ 3 x 2 - 5 x - 2 6 x 2 - 7 x - 3

3 ( x 3 ) ( x + 1 ) ( 2 x 3 ) 2 ( x 2 3 x 2 ) ( x 2 )

- 2 b 2 - 2 b + 4 8 b 2 - 28 b - 16 ÷ b 2 - 2 b + 1 2 b 2 - 5 b - 3

x 2 + 4 x + 3 x 2 + 5 x + 4 ÷ ( x + 3 )

( x + 4 ) ( x 1 ) ( x + 3 ) ( x 2 4 x 3 )

x 2 - 3 x + 2 x 2 - 4 x + 3 ÷ ( x - 3 )

3 x 2 - 21 x + 18 x 2 + 5 x + 6 ÷ ( x + 2 )

3 ( x 6 ) ( x 1 ) ( x + 2 ) 2 ( x + 3 )

Exercises for review

( [link] ) If a < 0 , then | a | = .

( [link] ) Classify the polynomial 4 x y + 2 y as a monomial, binomial, or trinomial. State its degree and write the numerical coefficient of each term.

binomial; 2; 4, 2

( [link] ) Find the product: y 2 ( 2 y 1 ) ( 2 y + 1 ) .

( [link] ) Translate the sentence “four less than twice some number is two more than the number” into an equation.

2 x 4 = x + 2

( [link] ) Reduce the fraction x 2 - 4 x + 4 x 2 - 4 .

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Algebra ii for the community college. OpenStax CNX. Jul 03, 2014 Download for free at http://cnx.org/content/col11671/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra ii for the community college' conversation and receive update notifications?

Ask