<< Chapter < Page Chapter >> Page >

A numerical example

g N ( s ) = 1 5 ( 1 + s + s 2 + s 3 + s 4 ) g Y ( s ) = 0 . 1 ( 5 s + 3 s 2 + 2 s 3 )

Note that the zero power is missing from g Y , corresponding to the fact that P ( Y = 0 ) = 0 .

gN = 0.2*[1 1 1 1 1];gY = 0.1*[0 5 3 2];      % Note the zero coefficient in the zero positiongend Do not forget zero coefficients for missing powersEnter the gen fn COEFFICIENTS for gN  gN Enter the gen fn COEFFICIENTS for gY  gYResults are in N, PN, Y, PY, D, PD, P May use jcalc or jcalcf on N, D, PTo view distribution for D, call for gD disp(gD)                 % Optional display of complete distribution         0    0.2000     1.0000    0.1000    2.0000    0.1100     3.0000    0.1250    4.0000    0.1155     5.0000    0.1110    6.0000    0.0964     7.0000    0.0696    8.0000    0.0424     9.0000    0.0203   10.0000    0.0075    11.0000    0.0019   12.0000    0.0003 p3 = (D == 3)*PD'        % P(D=3) P3 =  0.1250P4_12 = ((D >= 4)&(D <= 12))*PD' P4_12 = 0.4650           % P(4 <= D <= 12)
Got questions? Get instant answers now!

Number of successes for random number N Of trials.

We are interested in the number of successes in N trials for a general counting random variable. This is a generalization of the Bernoulli case in [link] . Suppose, as in [link] , the number of customers in a major appliance store is equally likely to be 1, 2, or 3, and eachbuys at least one item with probability p = 0 . 6 . Determine the distribution for the number D of buying customers.

SOLUTION

We use g N , g Y , and gend.

gN = (1/3)*[0 1 1 1]; % Note zero coefficient for missing zero powergY = [0.4 0.6];       % Generating function for the indicator functiongend Do not forget zero coefficients for missing powersEnter gen fn COEFFICIENTS for gN  gN Enter gen fn COEFFICIENTS for gY  gYResults are in N, PN, Y, PY, D, PD, P May use jcalc or jcalcf on N, D, PTo view distribution for D, call for gD disp(gD)         0    0.2080     1.0000    0.4560    2.0000    0.2640     3.0000    0.0720
Got questions? Get instant answers now!

The procedure gend is limited to simple N and Y k , with nonnegative integer values. Sometimes, a random variable with unbounded range may be approximated by a simplerandom variable. The solution in the following example utilizes such an approximation procedure for the counting random variable N .

Solution of the shop time [link]

The number N of jobs brought to a service shop in a day is Poisson (8). The individual shop hour charges Y k have the common distribution Y = [ 0 1 2 ] with probabilities P Y = [ 1 / 4 1 / 2 1 / 4 ] .

Under the basic assumptions of our model, determine P ( D 4 ) .

SOLUTION

Since Poisson N is unbounded, we need to check for a sufficient number of terms in a simple approximation. Then we proceed as in the simple case.

pa = cpoisson(8,10:5:30)     % Check for sufficient number of terms pa =   0.2834    0.0173    0.0003    0.0000    0.0000p25 = cpoisson(8,25)         % Check on choice of n = 25 p25 =  1.1722e-06gN = ipoisson(8,0:25);       % Approximate gN gY = 0.25*[1 2 1]; gendDo not forget zero coefficients for missing powers Enter gen fn COEFFICIENTS for gN  gN Enter gen fn COEFFICIENTS for gY  gYResults are in N, PN, Y, PY, D, PD, P May use jcalc or jcalcf on N, D, PTo view distribution for D, call for gD disp(gD(D<=20,:))            % Calculated values to D = 50          0    0.0025         % Display for D <= 20     1.0000    0.0099    2.0000    0.0248     3.0000    0.0463    4.0000    0.0711     5.0000    0.0939    6.0000    0.1099     7.0000    0.1165    8.0000    0.1132     9.0000    0.1021   10.0000    0.0861    11.0000    0.0684   12.0000    0.0515    13.0000    0.0369   14.0000    0.0253    15.0000    0.0166   16.0000    0.0105    17.0000    0.0064   18.0000    0.0037    19.0000    0.0021   20.0000    0.0012 sum(PD)                       % Check on sufficiency of approximationans =  1.0000 P4 = (D<=4)*PD' P4 =   0.1545                 % Theoretical value (4  places) = 0.1545ED = D*PD' ED =   8.0000                 % Theoretical = 8  ( [link] ) VD = (D.^2)*PD' - ED^2VD =  11.9999                 % Theoretical = 12 ( [link] )
Got questions? Get instant answers now!

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Applied probability. OpenStax CNX. Aug 31, 2009 Download for free at http://cnx.org/content/col10708/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Applied probability' conversation and receive update notifications?

Ask