<< Chapter < Page Chapter >> Page >
This describes the objectives for a group project about radar jamming, for the Rice ELEC301 fall 2004.

Project objective

The basic objective was to design a program in Matlab that simulates how police radar guns work and various methods of how to jam those radar signals. Simulation is split into three separate programs that each generated a signal or value that results from some analysis of a provided target.

Car

Generates the spectrum of the speed beam reflected off of a stationary landscape and moving vehicle.

Police

Analyzes the reflected spectrum from the vehicle, removes the original speed beam frequency and then uses a match filter to determine the speed that the remaining frequencies represent.

Jam

Outputs a modified version of the spectrum emitted from the car so as to fool the match filter in the Police Program. There are several differently implemented versions of jam.

Theory of the basic operation

One of the basic operating theory behind this simulation of speed guns is that of the Doppler Effect. We assume the outgoing beam Gaussian and propagates towards a moving vehicle and surrounding objects that are stationary. Each surrounding object will reflect the Gaussian beam with no frequency shift according to the Doppler Effect. The gun then reads in the reflected waves and gets a combined signal at, ideally, two different frequencies: the reflection from nonmoving objects, and the frequency from the moving object. Using some signal analysis, the gun then determines how large the frequency shift was and from that, calculates the speed of the vehicle. The reason this works is that the frequency shift and the speed of the vehicle are proportional.

The process of jamming requires knowledge of how the gun determines these frequency shifts. More than likely it will use a matched filter, so the point of the 'jammers' is to manipulate this calculation to give the wrong answer. A 'jammer' works by outputting a signal at a frequency that will overshadow any reflections from the car.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Radar jammer in matlab. OpenStax CNX. Dec 23, 2004 Download for free at http://cnx.org/content/col10257/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Radar jammer in matlab' conversation and receive update notifications?

Ask