<< Chapter < Page Chapter >> Page >

Nanotechnology: ferrofluids and liquid crystals

Objective

  • To synthesize an aqueous ferrofluid (magnetite) and observe its properties.
  • To understand how nanotechnology affects everyday life.
  • To learn about surfactants and how they work.

Grading

  • Pre-Lab (10%)
  • Lab Report Form (80%)
  • TA Points (10%)

Background information

Nanotechnology is the science of controlling matter with dimensions between 1 and 100 nanometers. This includes manipulating individual molecules. It is a multidisciplinary field consisting of physics, biology, chemistry, medicine, engineering, and nearly any other applied science. The prefix nano- means ten to the minus ninth power, or one billionth. There have been great advances in nanotechnology in recent years, and scientists routinely make materials that are only a few nanometers in size, or about 1/80,000 the diameter of a human hair. See Figure 1 to notice how small a nanometer is compared to other common materials.

Materials at the nanoscale exhibit interesting optical, electronic, physical, and chemical properties due to their small size. For example, catalysis chemical reactions occur at the surface of bulk material so as particles become smaller, the ratio of the surface area to the volume of the particles increases, thereby making a volume of nanoparticle catalysts more reactive than an equal volume of bulk catalyst. Optical properties of bulk materials are not size dependant, that is no matter what the size of a piece of bulk material it will have the same optical properties. This is not the case for nanomaterials. As you will see in the instructor demo, different sizes of gold nanoparticles exhibit very different colors.

In the 1960s NASA Research Centers discovered fluids that could be controlled through the application of a magnetic field. These fluids were developed to confine liquids in space. These nanoparticle fluids are commonly known as ferrofluids and they are still an active area of research.

Ferrofluids have many current industrial applications. They are used to dampen vibration in audio loudspeakers, they can behave as liquid O-rings in rotating shaft seals, and they are used in high-speed computer disk drives to eliminate impurities. They also have many potential applications in biomedical, environmental, and engineering fields.

Figure 1-Obtained from Office of Basic Energy Sciences, US Department of Energy

A ferrofluid is a stable colloid suspension of magnetic nanoparticles in a liquid carrier. The nanoparticles are suspended throughout the liquid and have an average size of ~10 nm. It is critical that the nanoparticles are coated with surfactant to prevent the particles from aggregating together. The surfactants must be strong enough to prevent agglomeration even when a magnetic field is applied and they must overcome the intermolecular forces between the nanoparticles. For this reason, a typical ferrofluid contains 5% magnetic nanoparticles, 10% surfactant, and 85% carrier fluid by volume.

There are two basic steps in creating a ferrofluid: synthesis of the magnetic solid, magnetite ( Fe 3 O 4 size 12{ ital "Fe" rSub { size 8{3} } O rSub { size 8{4} } } {} ), and suspension in water with the aid of a surfactant. The magnetic particles must be very small on the order of 10 nm (100Å) in diameter, so that the thermal energy of the particles is large enough to overcome the magnetic interactions between particles. If the particles are too large, magnetic interactions will dominate and the particles will agglomerate. The magnetite will be synthesized by a precipitation reaction that occurs upon mixing FeCl 2 size 12{ ital "FeCl" rSub { size 8{2} } } {} and FeCl 3 size 12{ ital "FeCl" rSub { size 8{3} } } {} with ammonium hydroxide (an aqueous solution of ammonia, NH 3 size 12{ ital "NH" rSub { size 8{3} } } {} ). The unbalanced equation for this reaction is as follows:

Questions & Answers

1. Discuss the processes involved during exchange of fluids between intra and extracellular space.
Mustapha Reply
what are components of cells
ofosola Reply
twugzfisfjxxkvdsifgfuy7 it
Sami
58214993
Sami
what is a salt
John
the difference between male and female reproduction
John
what is computed
IBRAHIM Reply
what is biology
IBRAHIM
what is the full meaning of biology
IBRAHIM
what is biology
Jeneba
what is cell
Kuot
425844168
Sami
what is biology
Inenevwo
what is cytoplasm
Emmanuel Reply
structure of an animal cell
Arrey Reply
what happens when the eustachian tube is blocked
Puseletso Reply
what's atoms
Achol Reply
discuss how the following factors such as predation risk, competition and habitat structure influence animal's foraging behavior in essay form
Burnet Reply
cell?
Kuot
location of cervical vertebra
KENNEDY Reply
What are acid
Sheriff Reply
define biology infour way
Happiness Reply
What are types of cell
Nansoh Reply
how can I get this book
Gatyin Reply
what is lump
Chineye Reply
what is cell
Maluak Reply
what is biology
Maluak
what is vertibrate
Jeneba
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Honors chemistry spring. OpenStax CNX. Mar 10, 2008 Download for free at http://cnx.org/content/col10512/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Honors chemistry spring' conversation and receive update notifications?

Ask