<< Chapter < Page Chapter >> Page >

And so my goal in this class, running through the entire quarter, not just on learning theory, is actually not only to give you the tools of machine learning, but to teach you how to use them well. And I've noticed this is something that really not many other classes teach. And this is something I'm really convinced is a huge deal, and so by the end of this class, I hope all of you will be master carpenters. I hope all of you will be really good at applying these learning algorithms and getting them to work amazingly well in many problems. Okay?

Let's see. So [inaudible] the board. After learning theory, there's another class of learning algorithms that I then want to teach you about, and that's unsupervised learning. So you recall, right, a little earlier I drew an example like this, right, where you have a couple of features, a couple of input variables and sort of malignant tumors and benign tumors or whatever. And that was an example of a supervised learning problem because the data you have gives you the right answer for each of your patients. The data tells you this patient has a malignant tumor; this patient has a benign tumor. So it had the right answers, and you wanted the algorithm to just produce more of the same.

In contrast, in an unsupervised learning problem, this is the sort of data you get, okay? Where speaking loosely, you're given a data set, and I'm not gonna tell you what the right answer is on any of your data. I'm just gonna give you a data set and I'm gonna say, "Would you please find interesting structure in this data set?" So that's the unsupervised learning problem where you're sort of not given the right answer for everything.

So, for example, an algorithm may find structure in the data in the form of the data being partitioned into two clusters, or clustering is sort of one example of an unsupervised learning problem.

So I hope you can see this. It turns out that these sort of unsupervised learning algorithms are also used in many problems. This is a screen shot — this is a picture I got from Sue Emvee, who's a PhD student here, who is applying unsupervised learning algorithms to try to understand gene data, so is trying to look at genes as individuals and group them into clusters based on properties of what genes they respond to — based on properties of how the genes respond to different experiments.

Another interesting application of [inaudible] sorts of clustering algorithms is actually image processing, this which I got from Steve Gules, who's another PhD student. It turns out what you can do is if you give this sort of data, say an image, to certain unsupervised learning algorithms, they will then learn to group pixels together and say, gee, this sort of pixel seems to belong together, and that sort of pixel seems to belong together.

And so the images you see on the bottom — I guess you can just barely see them on there — so the images you see on the bottom are groupings — are what the algorithm has done to group certain pixels together. On a small display, it might be easier to just look at the image on the right. The two images on the bottom are two sort of identical visualizations of the same grouping of the pixels into [inaudible] regions.

Questions & Answers

what does the ideal gas law states
Joy Reply
Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Machine learning. OpenStax CNX. Oct 14, 2013 Download for free at http://cnx.org/content/col11500/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Machine learning' conversation and receive update notifications?

Ask