<< Chapter < Page Chapter >> Page >
Chương này trình bày cách xây dựng mô hình quy hoạch tuyến tính của những bài toán dạng đơn giản. Đây là những kiến thức quan trọng để xây dựng mô hình cho những bài toán phức tạp hơn trong thực tế sau này. Các khái niệm về ‘’ lồi’’ đuợc trình bày để làm cơ sở cho phương pháp hình học giải quy hoạch tuyến tính. Một ví dụ mở đầu được trình bày một cách trực quan để làm rõ khái niệm về phương án tối ưu của quy hoạch tuyến tính.

LÝ THUYẾT CƠ BẢN VỀ QUY HOẠCH TUYẾN TÍNH

Giới thiệu bài toán quy hoạch tuyến tính

Có thể tạm định nghĩa quy hoạch tuyến tính là lĩnh vực toán học nghiên cứu các bài toán tối ưu mà hàm mục tiêu (vấn đề được quan tâm) và các ràng buộc (điều kiện của bài toán) đều là hàm và các phương trình hoặc bất phương trình tuyến tính. Đây chỉ là một định nghĩa mơ hồ, bài toán quy hoạch tuyến tính sẽ được xác định rõ ràng hơn thông qua các ví dụ .

Các bước nghiên cứu và ứng dụng một bài toán quy hoạch tuyến tính điển hình là như sau :

a- Xác định vấn đề cần giải quyết, thu thập dữ liệu.

b- Lập mô hình toán học.

c- Xây dựng các thuật toán để giải bài toán đã mô hình hoá bằng ngôn ngữ thuận lợi cho việc lập trình cho máy tính.

d- Tính toán thử và điều chỉnh mô hình nếu cần.

e- Áp dụng giải các bài toán thực tế.

Bài toán vốn đầu tư

Người ta cần có một lượng (tối thiểu) chất dinh dưỡng i=1,2,..,m do các thức ăn j=1,2,...,n cung cấp. Giả sử :

aij là số lượng chất dinh dưỡng loại i có trong 1 đơn vị thức ăn loại j

(i=1,2,...,m) và (j=1,2,..., n)

bi là nhu cầu tối thiểu về loại dinh dưỡng i

cj là giá mua một đơn vị thức ăn loại j

Vấn đề đặt ra là phải mua các loại thức ăn như thế nào để tổng chi phí bỏ ra ít nhất mà vẫn đáp ứng được yêu cầu về dinh dưỡng. Vấn đề được giải quyết theo mô hình sau đây :

Gọi xj  0 (j= 1,2,...,n) là số lượng thức ăn thứ j cần mua .

Tổng chi phí cho việc mua thức ăn là :

z = j = 1 n c j x j = c 1 x 1 + c 2 x 2 + . . . . . . + c n x n size 12{z= Sum cSub { size 8{j=1} } cSup { size 8{n} } {c rSub { size 8{j} } x rSub { size 8{j} } } =c rSub { size 8{1} } x rSub { size 8{1} } +c rSub { size 8{2} } x rSub { size 8{2} } + "." "." "." "." "." "." +c rSub { size 8{n} } x rSub { size 8{n} } } {}

Vì chi phí bỏ ra để mua thức ăn phải là thấp nhất nên yêu cầu cần được thỏa mãn là :

min z = j = 1 n c j x j = c 1 x 1 + c 2 x 2 + . . . . . . + c n x n size 12{"min z"= Sum cSub { size 8{j=1} } cSup { size 8{n} } {c rSub { size 8{j} } x rSub { size 8{j} } } =c rSub { size 8{1} } x rSub { size 8{1} } +c rSub { size 8{2} } x rSub { size 8{2} } + "." "." "." "." "." "." +c rSub { size 8{n} } x rSub { size 8{n} } } {}

Lượng dinh dưỡng i thu được từ thức ăn 1 là : ai1x1 (i=1m)

Lượng dinh dưỡng i thu được từ thức ăn 2 là : ai2x2

.........................................................

Lượng dinh dưỡng i thu được từ thức ăn n là : ainxn

Vậy lượng dinh dưỡng thứ i thu được từ các loại thức ăn là :

ai1x1+ai2x2+...+ainxn (i=1m)

Vì lượng dinh dưỡng thứ i thu được phải thỏa yêu cầu bi về dinh dưỡng loại đó nên ta có ràng buộc sau :

ai1x1+ai2x2+...+ainxn  bi (i=1m)

Khi đó theo yêu cầu của bài toán ta có mô hình toán sau đây :

min z = j = 1 n c j x j = c 1 x 1 + c 2 x 2 + . . . . . . + c n x n size 12{"min z"= Sum cSub { size 8{j=1} } cSup { size 8{n} } {c rSub { size 8{j} } x rSub { size 8{j} } } =c rSub { size 8{1} } x rSub { size 8{1} } +c rSub { size 8{2} } x rSub { size 8{2} } + "." "." "." "." "." "." +c rSub { size 8{n} } x rSub { size 8{n} } } {}

a 11 x 1 + a 12 x 2 + . . . + a 1n x n b 1 a 21 x 1 + a 22 x 2 + . . . + a 2n x n b 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a m1 x 1 + a m2 x 2 + . . . + a mn x n b m x j 0 ( j = 1,2, . . . ,n ) { { { { size 12{alignl { stack { left lbrace a rSub { size 8{"11"} } x rSub { size 8{1} } +a rSub { size 8{"12"} } x rSub { size 8{2} } + "." "." "." +a rSub { size 8{"1n"} } x rSub { size 8{n} }>= b rSub { size 8{1} } {} # right none left lbrace a rSub { size 8{"21"} } x rSub { size 8{1} } +a rSub { size 8{"22"} } x rSub { size 8{2} } + "." "." "." +a rSub { size 8{"2n"} } x rSub { size 8{n} }>= b rSub { size 8{2} } {} # right none left lbrace "." "." "." "." "." "." "." "." "." "." "." "." "." "." "." "." "." "." "." "." "." "." "." "." "." "." "." "." "." "." "." "." "." "." "." "." "." "." "." "." "." "." {} #right none left lbrace a rSub { size 8{"m1"} } x rSub { size 8{1} } +a rSub { size 8{"m2"} } x rSub { size 8{2} } + "." "." "." +a rSub { size 8{"mn"} } x rSub { size 8{n} }>= b rSub { size 8{m} } {} # right none left lbrace x rSub { size 8{j} }>= "0 " \( j="1,2," "." "." "." ",n" \) {} # right no } } lbrace } {}

Bài toán lập kế hoạch sản xuất

Từ m loại nguyên liệu hiện có người ta muốn sản xuất n loại sản phẩm

Giả sử :

aij là lượng nguyên liệu loại i dùng để sản xuất 1 sản phẩm loại j

(i=1,2,...,m) và (j=1,2,..., n)

bi là số lượng nguyên liệu loại i hiện có

cj là lợi nhuận thu được từ việc bán một đơn vị sản phẩm loại j

Vấn đề đặt ra là phải sản xuất mỗi loại sản phẩm là bao nhiêu sao cho tổng lợi nhuận thu được từ việc bán các sản phẩm lớn nhất trong điều kiện nguyên liệu hiện có.

Questions & Answers

what does the ideal gas law states
Joy Reply
Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Quy hoạch tuyến tính. OpenStax CNX. Aug 08, 2009 Download for free at http://cnx.org/content/col10903/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Quy hoạch tuyến tính' conversation and receive update notifications?

Ask