<< Chapter < Page Chapter >> Page >

Student learning outcomes

By the end of this chapter, the student should be able to:

  • Calculate and interpret confidence intervals for one population mean and one population proportion.
  • Interpret the student-t probability distribution as the sample size changes.
  • Discriminate between problems applying the normal and the student-t distributions.

Introduction

Suppose you are trying to determine the mean rent of a two-bedroom apartment in your town. You might look in the classified section of the newspaper, writedown several rents listed, and average them together. You would have obtained a point estimate of the true mean. If you are trying to determine the percent of timesyou make a basket when shooting a basketball, you might count the number of shots you make and divide that by the number of shots you attempted. In thiscase, you would have obtained a point estimate for the true proportion.

We use sample data to make generalizations about an unknown population. This part of statistics is called inferential statistics . The sample data help us to make an estimate of a population parameter . We realize that the point estimate is most likely not the exact value of the population parameter, but close to it. Aftercalculating point estimates, we construct confidence intervals in which we believe the parameter lies.

In this chapter, you will learn to construct and interpret confidence intervals. You will also learn a new distribution, the Student's-t, and how it is used with theseintervals. Throughout the chapter, it is important to keep in mind that the confidence interval is a random variable. It is the parameter that isfixed.

If you worked in the marketing department of an entertainment company, you might be interested in the mean number of compact discs (CD's) a consumerbuys per month. If so, you could conduct a survey and calculate the sample mean, x , and the sample standard deviation, s . You would use x to estimate the population mean and s to estimate the population standard deviation. The sample mean, x , is the point estimate for the population mean, μ . The sample standard deviation, s , is the point estimate for the population standard deviation, σ .

Each of x and s is also called a statistic.

A confidence interval is another type of estimate but, instead of being just one number, it is an interval of numbers. The interval of numbers is a range of values calculated from a given set of sample data. The confidence interval is likely to include an unknown population parameter.

Suppose for the CD example we do not know the population mean μ but we do know that the population standard deviation is σ = 1 and our sample size is 100. Then by the Central Limit Theorem, the standard deviation for the sample mean is

σ n = 1 100 = 0.1 .

The Empirical Rule , which applies to bell-shaped distributions, says that in approximately 95% of the samples, the sample mean, x , will be within two standard deviations of the population mean μ . For our CD example, two standard deviations is (2)(0.1) = 0.2 . The sample mean x is likely to be within 0.2 units of μ .

Because x is within 0.2 units of μ , which is unknown, then μ is likely to be within 0.2 units of x in 95% of the samples. The population mean μ is contained in an interval whose lower number is calculated by taking the sample mean and subtractingtwo standard deviations ( ( 2 ) ( 0.1 ) ) and whose upper number is calculated by taking the sample mean and adding two standard deviations. In other words, μ is between x - 0.2 and x + 0.2 in 95% of all the samples.

For the CD example, suppose that a sample produced a sample mean x = 2 . Then the unknown population mean μ is between

x - 0.2 = 2 - 0.2 = 1.8 and x + 0.2 = 2 + 0.2 = 2.2

We say that we are 95% confident that the unknown population mean number of CDs is between 1.8 and 2.2. The 95% confidence interval is (1.8, 2.2).

The 95% confidence interval implies two possibilities. Either the interval (1.8, 2.2) contains the true mean μ or our sample produced an x that is not within 0.2 units of the true mean μ . The second possibility happens for only 5% of all the samples (100% - 95%).

Remember that a confidence interval is created for an unknown population parameter like the population mean, μ . Confidence intervals for some parameters have the form

(point estimate - margin of error, point estimate + margin of error)

The margin of error depends on the confidence level or percentage of confidence.

When you read newspapers and journals, some reports will use the phrase "margin of error." Other reports will not use that phrase, but include a confidence interval as the point estimate + or - the margin oferror. These are two ways of expressing the same concept.

Although the text only covers symmetric confidence intervals, there are non-symmetric confidence intervals (for example, a confidence interval for the standard deviation).

Optional collaborative classroom activity

Have your instructor record the number of meals each student in your class eats out in a week. Assume that the standard deviation is known to be 3 meals.Construct an approximate 95% confidence interval for the true mean number of meals students eat out each week.

  1. Calculate the sample mean.
  2. σ = 3 and n = the number of students surveyed.
  3. Construct the interval ( x - 2 σ n , x + 2 σ n )

We say we are approximately 95% confident that the true average number of meals that students eat out in a week is between __________ and ___________.

Questions & Answers

it is the relatively stable flow of income
Chidubem Reply
what is circular flow of income
Divine Reply
branches of macroeconomics
SHEDRACK Reply
what is Flexible exchang rate?
poudel Reply
is gdp a reliable measurement of wealth
Atega Reply
introduction to econometrics
Husseini Reply
Hi
mostafa
hi
LEMLEM
hello
Sammol
hi
Mahesh
bi
Ruqayat
hi
Ruqayat
Hi fellas
Nyawa
hey
Sammol
hi
God
hello
Jahara
Good morning
Jorge
hi
abubakar
hi
Nmesoma
hi
Mahesh
Hi
Tom
Why is unemployment rate never zero at full employment?
Priyanka Reply
bcoz of existence of frictional unemployment in our economy.
Umashankar
what is flexible exchang rate?
poudel
due to existence of the pple with disabilities
Abdulraufu
the demand of a good rises, causing the demand for another good to fall
Rushawn Reply
is it possible to leave every good at the same level
Joseph
I don't think so. because check it, if the demand for chicken increases, people will no longer consume fish like they used to causing a fall in the demand for fish
Anuolu
is not really possible to let the value of a goods to be same at the same time.....
Salome
Suppose the inflation rate is 6%, does it mean that all the goods you purchase will cost 6% more than previous year? Provide with reasoning.
Geetha Reply
Not necessarily. To measure the inflation rate economists normally use an averaged price index of a basket of certain goods. So if you purchase goods included in the basket, you will notice that you pay 6% more, otherwise not necessarily.
Waeth
discus major problems of macroeconomics
Alii Reply
what is the problem of macroeconomics
Yoal
Economic growth Stable prices and low unemployment
Ephraim
explain inflationcause and itis degre
Miresa Reply
what is inflation
Getu
increase in general price levels
WEETO
Good day How do I calculate this question: C= 100+5yd G= 2000 T= 2000 I(planned)=200. Suppose the actual output is 3000. What is the level of planned expenditures at this level of output?
Chisomo Reply
how to calculate actual output?
Chisomo
how to calculate the equilibrium income
Beshir
Criteria for determining money supply
Thapase Reply
who we can define macroeconomics in one line
Muhammad
Aggregate demand
Mohammed
C=k100 +9y and i=k50.calculate the equilibrium level of output
Mercy Reply
Hi
Isiaka
Hi
Geli
hy
Man
👋
Bahunda
hy how are you?
Man
ys
Amisha
how are you guys
Sekou
f9 guys
Amisha
how are you guys
Sekou
ys am also fine
Amisha
fine and you guys
Geli
from Nepal
Amisha
nawalparasi district from belatari
Amisha
nd u
Amisha
I am Camara from Guinea west Africa... happy to meet you guys here
Sekou
ma management ho
Amisha
ahile becheclor ho
Amisha
hjr ktm bta ho ani k kaam grnu hunxa tw
Amisha
belatari
Amisha
1st year ho
Amisha
nd u
Amisha
ahh
Amisha
kaha biratnagar
Amisha
ys
Amisha
kina k vo
Amisha
money as unit of account means what?
Kalombe
A unit of account is something that can be used to value goods and services and make calculations
Jim
all of you please speak in English I can't understand you're language
Muhammad
I want to know how can we define macroeconomics in one line
Muhammad
it must be .9 or 0.9 no Mpc is greater than 1 Y=100+.9Y+50 Y-.9Y=150 0.1Y/0.1=150/0.1 Y=1500
Kalombe
Mercy is it clear?😋
Kalombe
hi can someone help me on this question If a negative shocks shifts the IS curve to the left, what type of policy do you suggest so as to stabilize the level of output? discuss your answer using appropriate graph.
Galge Reply
if interest rate is increased this will will reduce the level of income shifting the curve to the left ◀️
Kalombe
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Collaborative statistics (custom online version modified by t. short). OpenStax CNX. Jul 15, 2013 Download for free at http://cnx.org/content/col11476/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Collaborative statistics (custom online version modified by t. short)' conversation and receive update notifications?

Ask