<< Chapter < Page Chapter >> Page >

In 1990, it was estimated that Cray Research's installed base of approximately 200 machines spent 40% of all CPU cycles computing the fast Fourier transform (FFT)  [link] . With each machine worth about USD$25 million, the performance of the FFT was of prime importance.

Today, use of the FFT is even more pervasive, and it is counted among the 10 algorithms that have had the greatest influence on the development andpractice of science and engineering in the 20 th century  [link] . Huge numbers of mobile smartphones, tablets and PCs  [link] , [link] , most of which are equipped with single-instruction, multiple-data (SIMD)  [link] , [link] microprocessors, compute the FFT on a large scale for a plethora of sound, video and imageprocessing applications. In the space of a few years, mobile applications have become a part of many people's everyday lives  [link] .

This thesis shows that the key to optimizing the performance of the split-radix FFT algorithms on SIMD microprocessors is latency and spatiallocality optimizations, and in some cases, a variant of the split-radix FFT called the conjugate-pairalgorithm  [link] , [link] , [link] , [link] . It is also shown that extensive machine specific calibration may besuperfluous.

Hypotheses

FFTW  [link] , [link] , [link] , SPIRAL  [link] , [link] , [link] and UHFFT  [link] , [link] , [link] , [link] , [link] are state of the art FFT libraries that employ automatic empirical optimization. SPIRAL automatically performs machine-specific optimizations atcompile time, and FFTW and UHFFT automatically adapt to a machine at run-time. Aside from the use of automatic optimization, a common denominator among theselibraries is the use of large straight line blocks of code and optimized memory locality.

The hypotheses outlined below test whether good heuristics and model-based optimization can be used in the place of automatic empirical optimization.

Hypothesis 1: accessing memory in sequential “streams” is critical for best performance

Large FFT exhibit poor temporal locality, and when computing these transforms on microprocessor based systems that feature a cache, bestperformance is typically achieved when “streaming” sequential data through the CPU. Hypothesis 1 is tested in Implementation Details with replicated coefficient lookup tables that trade-off increased memory size forbetter spatial locality, and in Streaming FFT by topologically sorting a directed acyclic graph (DAG) of sub-transforms to again improve spatial locality.

Hypothesis 2: the conjugate-pair algorithm is faster than the ordinary split-radix algorithm

Hypothesis 2 is based on the idea that memory bandwidth is a bottleneck, and on the fact that the conjugate-pair algorithm requires only half the number oftwiddle factor loads. This hypothesis is tested in Split-radix vs. conjugate-pair , where a highly optimized implementation of the conjugate-pair algorithm is benchmarked against anequally highly optimized implementation of the ordinary split-radix algorithm.

Hypothesis 3: the performance of an fft can be predicted based on characteristics of the underlying machine and the compiler

Exploratory experiments suggest that good results can be obtained without empirical techniques, and that certain parameters can be predicted based on thecharacteristics of the underlying machine and the compiler used. Hypothesis 3 is tested in Results and Discussion by building a model that predicts performance, and by benchmarking FFTW against an implementation that does notrequire extensive calibration, on 18 different machines.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Computing the fast fourier transform on simd microprocessors. OpenStax CNX. Jul 15, 2012 Download for free at http://cnx.org/content/col11438/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Computing the fast fourier transform on simd microprocessors' conversation and receive update notifications?

Ask