<< Chapter < Page | Chapter >> Page > |
A period is a horizontal row in the periodic table of the elements. Some of the trends that can be observed within a period are highlighted below:
The formation of oxides show a trend as you move across a period. This should be easy to see if you think about valency. In the first group all the elements lose an electron to form a cation. So the formula for an oxide will be . In the second group (moving from left to right across a period) the oxides have the formula . In the third group the oxides have the formula .
Several other trends may be observed across a period such as density, melting points and boiling points. These trends are not as obvious to see as the above trends and often show variations to the general trend.
Electron affinity and electronegativity also show some general trends across periods. Electron affinity can be thought of as how much an element wants electrons. Electron affinity generally increases from left to right across a period. Electronegativity is the tendency of atoms to attract electrons. The higher the electronegativity, the greater the atom attracts electrons. Electronegativity generally increases across a period (from left to right). Electronegativity and electron affinity will be covered in more detail in a later grade.
You may see periodic tables labeled with s-block, p-block, d-block and f-block. This is simply another way to group the elements. When we group elements like this we are simply noting which orbitals are being filled in each block. This method of grouping is not very useful to the work covered at this level.
Using the properties of the groups and the trends that we observe in certain properties (ionization energy, formation of halides and oxides, melting and boiling points, atomic diameter) we can predict the the properties of unknown elements. For example, the properties of the unfamiliar elements Francium (Fr), Barium (Ba), Astatine (At), and Xenon (Xe) can be predicted by knowing their position on the periodic table. Using the periodic table we can say: Francium (Group 1) is an alkali metal, very reactive and needs to lose 1 electron to obtain a full outer energy shell; Barium (Group 2) is an alkali earth metal and needs to lose 2 electrons to achieve stability; Astatine (Group 7) is a halogen, very reactive and needs to gain 1 electron to obtain a full outer energy shell; and Xenon (Group 8) is a noble gas and thus stable due to its full outer energy shell. This is how scientists are able to say what sort of properties the atoms in the last period have. Almost all of the elements in this period do not occur naturally on earth and are made in laboratories. These atoms do not exist for very long (they are very unstable and break apart easily) and so measuring their properties is difficult.
Refer to the elements listed below:
Notification Switch
Would you like to follow the 'Siyavula textbooks: grade 10 physical science [caps]' conversation and receive update notifications?