<< Chapter < Page Chapter >> Page >

Background

A periodic signal x ( t ) size 12{x \( t \) } {} can be expressed by an exponential Fourier series as follows:

x ( t ) = n = c n e j nt T size 12{x \( t \) = Sum cSub { size 8{n= - infinity } } cSup { size 8{ infinity } } {c rSub { size 8{n} } e rSup { size 8{j { {2π ital "nt"} over {T} } } } } } {}

where T indicates the period of the signal and c n size 12{c rSub { size 8{n} } } {} ’s are called Fourier series coefficients, which, in general, are complex. Obtain these coefficients by performing the following integration

c n = 1 T T x ( t ) e j nt T dt size 12{c rSub { size 8{n} } = { {1} over {T} } Int cSub { size 8{T} } {x \( t \) e rSup { size 8{ - j { {2π ital "nt"} over {T} } } } ital "dt"} } {}

which possesses the following symmetry properties

c n = c n size 12{ lline c rSub { size 8{ - n} } rline = lline c rSub { size 8{n} } rline } {}
c n = c n size 12{∠c rSub { size 8{ - n} } = - ∠c rSub { size 8{n} } } {}

where the symbol . size 12{ lline "." rline } {} denotes magnitude and size 12{∠} {} phase. Magnitudes of the coefficients possess even symmetry and their phases odd symmetry.

A periodic signal x ( t ) size 12{x \( t \) } {} can also be represented by a trigonometric Fourier series as follows:

x ( t ) = a 0 + n = 1 a n cos ( nt T ) + b n sin ( nt T ) size 12{x \( t \) =a rSub { size 8{0} } + Sum cSub { size 8{n=1} } cSup { size 8{ infinity } } {a rSub { size 8{n} } "cos" \( { {2π ital "nt"} over {T} } \) +b rSub { size 8{n} } "sin" \( { {2π ital "nt"} over {T} } \) } } {}

where

a 0 = 1 T T x ( t ) dt size 12{a rSub { size 8{0} } = { {1} over {T} } Int cSub { size 8{T} } {x \( t \) ital "dt"} } {}
a n = 2 T T x ( t ) cos ( nt T ) dt size 12{a rSub { size 8{n} } = { {2} over {T} } Int cSub { size 8{T} } {x \( t \) "cos" \( { {2π ital "nt"} over {T} } \) ital "dt"} } {}
b n = 2 T T x ( t ) sin ( nt T ) dt size 12{b rSub { size 8{n} } = { {2} over {T} } Int cSub { size 8{T} } {x \( t \) "sin" \( { {2π ital "nt"} over {T} } \) ital "dt"} } {}

The relationships between the trigonometric series and the exponential series coefficients are given by

a 0 = c 0 size 12{a rSub { size 8{0} } =c rSub { size 8{0} } } {}
a n = 2 Re { c n } size 12{a rSub { size 8{n} } =2"Re" lbrace c rSub { size 8{n} } rbrace } {}
b n = 2 Im { c n } size 12{b rSub { size 8{n} } = - 2"Im" lbrace c rSub { size 8{n} } rbrace } {}
c n = 1 2 ( a n jb n ) size 12{c rSub { size 8{n} } = { {1} over {2} } \( a rSub { size 8{n} } - ital "jb" rSub { size 8{n} } \) } {}

where Re size 12{"Re"} {} and Im size 12{"Im"} {} denote the real and imaginary parts, respectively.

According to the Parseval’s theorem, the average power in the signal x ( t ) size 12{x \( t \) } {} is related to the Fourier series coefficients c n size 12{c rSub { size 8{n} } } {} ’s, as indicated below

1 T T x ( t ) 2 dt = n = c n 2 size 12{ { {1} over {T} } Int cSub { size 8{T} } { lline x \( t \) rline rSup { size 8{2} } ital "dt"= Sum cSub { size 8{n= - infinity } } cSup { size 8{ infinity } } { lline c rSub { size 8{n} } rline rSup { size 8{2} } } } } {}

More theoretical details of Fourier series are available in signals and systems textbooks [link] - [link] .

Fourier series numerical computation

Fourier series coefficients are often computed numerically – in particular, when an analytic expression for x ( t ) size 12{x \( t \) } {} is not available or the integration in [link] - [link] is difficult to perform. By approximating the integrals in [link] - [link] with a summation of rectangular strips, each of width Δt size 12{Δt} {} , one can write

a 0 = 1 M m = 1 M x ( mΔt ) size 12{a rSub { size 8{0} } = { {1} over {M} } Sum cSub { size 8{m=1} } cSup { size 8{M} } {x \( mΔt \) } } {}
a n = 2 M m = 1 M x ( mΔt ) cos ( mn M ) size 12{a rSub { size 8{n} } = { {2} over {M} } Sum cSub { size 8{m=1} } cSup { size 8{M} } {x \( mΔt \) "cos" \( { {2π ital "mn"} over {M} } \) } } {}
b n = 2 M m = 1 M x ( mΔt ) sin ( mn M ) size 12{b rSub { size 8{n} } = { {2} over {M} } Sum cSub { size 8{m=1} } cSup { size 8{M} } {x \( mΔt \) "sin" \( { {2π ital "mn"} over {M} } \) } } {}

where x ( mΔt ) size 12{x \( mΔt \) } {} are M size 12{M} {} equally spaced data points representing x ( t ) size 12{x \( t \) } {} over a single period T size 12{T} {} , and Δt size 12{Δt} {} denotes the interval between data points such that Δt = T M size 12{Δt= { {T} over {M} } } {}

Similarly, by approximating the integrals in [link] with a summation of rectangular strips, each of width Δt size 12{Δt} {} , one can write

c n = 1 M m = M M x ( mΔt ) exp ( j2π mn M ) size 12{c rSub { size 8{n} } = { {1} over {M} } Sum cSub { size 8{m=M} } cSup { size 8{M} } {x \( mΔt \) "exp" \( { {j2π ital "mn"} over {M} } \) } } {}

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, An interactive approach to signals and systems laboratory. OpenStax CNX. Sep 06, 2012 Download for free at http://cnx.org/content/col10667/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'An interactive approach to signals and systems laboratory' conversation and receive update notifications?

Ask