<< Chapter < Page Chapter >> Page >

Cleaning

During the processes described above, semiconductor wafers are subjected to physical handling that leads to significant contamination. Possible sources of physical contamination include:

  1. airborne bacteria,
  2. grease and wax from cutting oils and physical handling,
  3. abrasive particulates (usually, silica, silicon carbide, alumina, or diamond dust) from lapping, grinding or sawing operations,
  4. plasticizers which are derived from containers and wrapping in which the wafers are handled and shipped.

Chemical contamination may also occur as a result of improper cleaning after etch steps. Light-metal (especially sodium and potassium) species may be traced to impurities in etchant solutions and are chemisorbed on to the surface where they are particularly problematical for metal oxide semiconductor (MOS) based devices, although higher levels of such impurities are tolerable for bipolar devices. Heavy metal impurities (e.g., Cu, Au, Fe, and Ag) are usually caused by electrodeposition from etchant solutions during fabrication. While wafers are cleaned prior to shipping, contamination accumulated during shipping and storage necessitates that all wafers be subjected to scrupulous cleaning prior to fabrication. Furthermore, cleaning is required at each step during the fabrication process. Although wafer cleaning is a vital part of each fabrication step, it is convenient to discuss cleaning within the general topic of wafer fabrication.

Cleaning silicon

The first step in cleaning a Si wafer is removal of all physical contaminants. These contaminates are removed by rinsing the wafer in hot organic solvents such as 1,1,1-trichloroethane (Cl 3 CH 3 ) or xylene (C 6 H 4 Me 2 ), accompanied by mechanical scrubbing, ultrasonic agitation, or compressed gas jets. Removal of the majority of light metal contaminants is accomplished by rinsing in hot deionized water, however, complete removal requires a further more aggressive cleaning process. The most widely used cleaning method in the Si semiconductor industry is based on a two step, two solution sequence known as the “RCA Cleaning Method”.

The first solution consists of H 2 O-H 2 O 2 -NH 4 OH in a volume ratio of 5:1:1 to 7:2:1, which is used to remove organic contaminants and heavy metals. The oxidation of the remaining organic contaminants by the hydrogen peroxide (H 2 O 2 ) produces water soluble products. Similarly, metal contaminants such as cadmium, cobalt, copper, mercury, nickel, and silver are solubilized by the NH 4 OH through the formation of soluble amino complexes, e.g., [link] .

The second solution consists of H 2 O-H 2 O 2 -HCl in a 6:1:1 to 8:2:1 volume ratio and removes the Group I(1), II(2) and III(13) metals. In addition, the second solution prevents re-deposition of the metal contaminants. Each of the washing steps is carried out for 10 - 20 min. at 75 - 85 °C with rapid agitation. Finally, the wafers are blown dry under a stream of nitrogen gas.

Cleaning gaas

In principle GaAs wafers may be cleaned in a similar manner to silicon wafers. The first step involves successive cleaning with hot organic solvents such as 1,1,1-trichloroethane, acetone, and methanol, each for 5-10 minutes. GaAs wafers cleaned in this manner may be stored under methanol for short periods of time.

Most cleaning solutions for GaAs are actually etches. A typical solution is similar to the second RCA solution and consists of an 80:10:1 ratio of H 2 O-H 2 O 2 -HCl. This solution is generally used at elevated temperatures (70 °C) with short dip times since it has a very fast etch rate (4.0 μm/min).

Measurements, inspections and packaging

Quality control measurements of the semiconductor crystal and subsequent wafer are performed throughout the process as an essential part of the fabrication of wafers. From crystal and wafer shaping through the final wafer finishing steps, quality control measurements are used to ensure that the materials meets customer specifications, and that problems can be corrected before they create scrap material and thus avoid further processing of reject material. Quality control measurements can be broadly classified into mechanical, electrical, structural, and chemical.

Mechanical measurements are concerned with the physical dimensions of the wafer, including: thickness, flatness, bow, taper and edge contour. Electrical measurements usually include: resistivity and lateral resistivity gradient, carrier type and lifetime. Measurements giving information on the perfection of the semiconductor crystal lattice are classified in the structural category and include: testing for stacking faults, and dislocations. Routine chemical measurements are limited to the measurement of dissolved oxygen and carbon by Fourier transform infrared spectroscopy (FT-IR). Finished wafers are individually marked for the purpose of identification and traceability. Packaging helps protect the finished wafers from contamination during shipping and storage.

Industry standards defining in detail how quality control measurements are to be made and determining the acceptable ranges for measured values have been developed by the American Society of Testing Materials (ASTM) and the Semiconductor Equipment and Materials Institute (SEMI).

Bibliography

  • A. C. Bonora, Silicon Wafer Process Technology: Slicing, Etching, Polishing , Semiconductor Silicon 1977, Electrochem. Soc., Pennington, NJ (1977).
  • L. D. Dyer, in Proceeding of the low-cost solar array wafering workshop 1981 , DoE-JPL-21012-66, Jet Propulsion Lab., Pasadena CA (1982).
  • J. C. Dyment and G. A. Rozgonyi, J. Electrochem. Soc. , 1971, 118 , 1346.
  • H. Gerischer and W. Mindt, Electrochem. Acta , 1968, 13 , 1329.
  • P. D. Green, Solid State Electron. , 1976, 19 , 815.
  • C. A. Harper and R. M. Sompson, Electronic Materials&Processing Handbook , McGraw Hill, New York, 2nd Edition.
  • S. Iida and K. Ito, J. Electrochem. Soc. , 1971, 118 , 768.
  • W. Kern, J. Electrochem. Soc. , 1990, 137 , 1887.
  • Y. Mori and N. Watanabe, J. Electrochem. Soc. , 1978, 125 , 1510.
  • D. L. Partin, A. G. Milnes, and L. F. Vassamillet, J. Electrochem. Soc. , 1979, 126 , 1581.
  • D. W. Shaw, J. Electrochem. Soc. , 1966, 113 , 958.
  • F. Snimura, Semiconductor Silicon Crystal Technology , Academic Press, New York (1989).
  • D. R. Turner, J. Electrochem. Soc. , 1960, 107 , 810.

Questions & Answers

if three forces F1.f2 .f3 act at a point on a Cartesian plane in the daigram .....so if the question says write down the x and y components ..... I really don't understand
Syamthanda Reply
hey , can you please explain oxidation reaction & redox ?
Boitumelo Reply
hey , can you please explain oxidation reaction and redox ?
Boitumelo
for grade 12 or grade 11?
Sibulele
the value of V1 and V2
Tumelo Reply
advantages of electrons in a circuit
Rethabile Reply
we're do you find electromagnetism past papers
Ntombifuthi
what a normal force
Tholulwazi Reply
it is the force or component of the force that the surface exert on an object incontact with it and which acts perpendicular to the surface
Sihle
what is physics?
Petrus Reply
what is the half reaction of Potassium and chlorine
Anna Reply
how to calculate coefficient of static friction
Lisa Reply
how to calculate static friction
Lisa
How to calculate a current
Tumelo
how to calculate the magnitude of horizontal component of the applied force
Mogano
How to calculate force
Monambi
a structure of a thermocouple used to measure inner temperature
Anna Reply
a fixed gas of a mass is held at standard pressure temperature of 15 degrees Celsius .Calculate the temperature of the gas in Celsius if the pressure is changed to 2×10 to the power 4
Amahle Reply
How is energy being used in bonding?
Raymond Reply
what is acceleration
Syamthanda Reply
a rate of change in velocity of an object whith respect to time
Khuthadzo
how can we find the moment of torque of a circular object
Kidist
Acceleration is a rate of change in velocity.
Justice
t =r×f
Khuthadzo
how to calculate tension by substitution
Precious Reply
hi
Shongi
hi
Leago
use fnet method. how many obects are being calculated ?
Khuthadzo
khuthadzo hii
Hulisani
how to calculate acceleration and tension force
Lungile Reply
you use Fnet equals ma , newtoms second law formula
Masego
please help me with vectors in two dimensions
Mulaudzi Reply
how to calculate normal force
Mulaudzi
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Chemistry of electronic materials. OpenStax CNX. Aug 09, 2011 Download for free at http://cnx.org/content/col10719/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry of electronic materials' conversation and receive update notifications?

Ask