<< Chapter < Page Chapter >> Page >
An introduction to fields and complex numbers.

Fields

In order to propely discuss the concept of vector spaces in linear algebra, it is necessary to develop the notion of a set of “scalars” by which we allow a vector to be multiplied. A framework within which our concept of real numbers would fit is desireable. Thus, we would like a set with two associative, commutative operations (like standard addition and multiplication) and a notion of their inverse operations (like subtraction and division). The mathematical algebraic construct that addresses this idea is the field. A field ( S , + , * ) is a set S together with two binary operations + and * such that the following properties are satisfied.

  1. Closure of S under + : For every x , y S , x + y S .
  2. Associativity of S under + : For every x , y , z S , ( x + y ) + z = x + ( y + z ) .
  3. Existence of + identity element: There is a e + S such that for every x S , e + + x = x + e + = x .
  4. Existence of + inverse elements: For every x S there is a y S such that x + y = y + x = e + .
  5. Commutativity of S under + : For every x , y S , x + y = y + x .
  6. Closure of S under * : For every x , y S , x * y S .
  7. Associativity of S under * : For every x , y , z S , ( x * y ) * z = x * ( y * z ) .
  8. Existence of * identity element: There is a e * S such that for every x S , e * + x = x + e * = x .
  9. Existence of * inverse elements: For every x S with x e + there is a y S such that x * y = y * x = e * .
  10. Commutativity of S under * : For every x , y S , x * y = y * x .
  11. Distributivity of * over + : For every x , y , z S , x * ( y + z ) = x y + x z .

While this definition is quite general, the two fields used most often in signal processing, at least within the scope of this course, are the real numbers and the complex numbers, each with their typical addition and multiplication operations.

The complex field

The reader is undoubtedly already sufficiently familiar with the real numbers with the typical addition and multiplication operations. However, the field of complex numbers with the typical addition and multiplication operations may be unfamiliar to some. For that reason and its importance to signal processing, it merits a brief explanation here.

Definitions

The notion of the square root of -1 originated with the quadratic formula: the solution of certain quadratic equations mathematically exists only if the so-called imaginary quantity -1 could be defined. Euler first used i for the imaginary unit but that notation did not take hold untilroughly Ampère's time. Ampère used the symbol i to denote current (intensité de current).It wasn't until the twentieth century that the importance of complex numbers to circuit theory became evident. By then, using i for current was entrenched and electrical engineers now choose j for writing complex numbers.

An imaginary number has the form j b b 2 . A complex number , z , consists of the ordered pair ( a , b ), a is the real component and b is the imaginary component (the j is suppressed because the imaginary component of the pair is always in the second position). The imaginary number j b equals ( 0 , b ). Note that a and b are real-valued numbers.

[link] shows that we can locate a complex number in what we call the complex plane . Here, a , the real part, is the x -coordinate and b , the imaginary part, is the y -coordinate.

The complex plane

A complex number is an ordered pair ( a , b ) that can be regarded as coordinates in the plane. Complex numbers can also be expressed in polar coordinates as r θ .
From analytic geometry, we know that locations in the plane can be expressed as the sum of vectors, with the vectors corresponding to the x and y directions. Consequently, a complex number z can be expressed as the (vector) sum z a j b where j indicates the y -coordinate. This representation is known as the Cartesian form of z . An imaginary number can't be numerically added to a real number;rather, this notation for a complex number represents vector addition, but it provides a convenient notation when we perform arithmetic manipulations.

Questions & Answers

what does the ideal gas law states
Joy Reply
Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Signals and systems. OpenStax CNX. Aug 14, 2014 Download for free at http://legacy.cnx.org/content/col10064/1.15
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Signals and systems' conversation and receive update notifications?

Ask