<< Chapter < Page Chapter >> Page >
This report summarizes work done as part of the Hippocampus Neuroscience PFUG under Rice University's VIGRE program. VIGRE is a program of Vertically Integrated Grants for Research and Education in the Mathematical Sciences under the direction of the National Science Foundation. A PFUG is a group of Postdocs, Faculty, Undergraduates and Graduate students formed round the study of a common problem. This module explains how to implement the conductance-based model for the dynamics of a network of single compartmental cells presented in the paper "Rate Models for Conductance-Based Cortical Neuronal Networks," by O. Shriki, D. Hansel, and H. Sompolinsky.

Introduction

In order to gain a better understanding of many biological processes, it is often necessary to implement a theoretical model of a neuronal network. In the paper Rate Models for Conductance-Based Cortical Neuronal Networks , Shriki et al. present a conductance-based model for simulating the dynamics of a neuronal network   [link] . The work done in this module is an implementation of their model. In his module Dynamics of the Firing Rate of Single Compartmental Cells , Yangluo Wang shows how to model the dynamics of an isolated cell using the Hodgkin and Huxley model. We will build on the work presented by Wang to model the dynamics of cells within a neuronal network driven by some external current. We then apply this model to a network of cells within a hypercolumn in primary visual cortex.

Network dynamics

The dynamics of cell i within a network of N neurons are given by

C m d V i d t = I i l e a k - I i a c t i v e + I i e x t + I i n e t ,

where the parameters for cell i are defined according to the following table:

Parameter Definitions
C m membrane capacitance
V i membrane potential
I i l e a k leak current
I i a c t i v e active ionic current
I i e x t externally applied current
I i n e t network current

Leak current and active current

The model of a cell within a network is very similar to the model of an isolated cell,

C m d V i d t = I i l e a k - I i a c t i v e + I i a p p ,

where

I i l e a k = g L ( E L - V i ) ,
I i a c t i v e = I i N a + I i K + I i A .

The leak current and active current for a cell within a network is defined exactly as it is for an isolated cell. For details on these two currents, see Yungluo Wang's module Dynamics of the Firing Rate of Single Compartmental Cells . The applied current in the isolated cell model is an abstract current that drives the cell. For the network model, we replace this applied current with the sum of the external and network currents.

Network current

The network current for cell i is induced by other cells within the network and is given by

I i n e t ( t ) = j = 1 N g i j ( t ) ( E j - V i ( t ) ) ,

where g i j is the synaptic conductance of cell i generated by action potentials of cell j , and E j is the reversal potential of the synapse from cell j to cell i . Note that E j depends only on the properties of the presynaptic cell j . If t j is a vector containing the spike times of cell j , the conductance at the synapse from cell j to cell i is given by

d g i j ( t ) d t = - g i j ( t ) τ i j + G i j R j ( t ) , t > 0 ,

where τ i j is the conductance decay constant, G i j is the peak synaptic conductance, and R j ( t ) is the firing rate of cell j given by

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, The art of the pfug. OpenStax CNX. Jun 05, 2013 Download for free at http://cnx.org/content/col10523/1.34
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'The art of the pfug' conversation and receive update notifications?

Ask