<< Chapter < Page Chapter >> Page >
Describes discrete time systems.

Introduction

As you already now know, a discrete time system operates on a discrete time signal input and produces a discrete time signal output. There are numerous examples of useful discrete time systems in digital signal processing, such as digital filters for images or sound. The class of discrete time systems that are both linear and time invariant, known as discrete time LTI systems, is of particular interest as the properties of linearity and time invariance together allow the use of some of the most important and powerful tools in signal processing.

Discrete time systems

Linearity and time invariance

A system H is said to be linear if it satisfies two important conditions. The first, additivity, states for every pair of signals x , y that H ( x + y ) = H ( x ) + H ( y ) . The second, homogeneity of degree one, states for every signal x and scalar a we have H ( a x ) = a H ( x ) . It is clear that these conditions can be combined together into a single condition for linearity. Thus, a system is said to be linear if for every signals x , y and scalars a , b we have that

H ( a x + b y ) = a H ( x ) + b H ( y ) .

Linearity is a particularly important property of systems as it allows us to leverage the powerful tools of linear algebra, such as bases, eigenvectors, and eigenvalues, in their study.

A system H is said to be time invariant if a time shift of an input produces the corresponding shifted output. In other, more precise words, the system H commutes with the time shift operator S T for every T Z . That is,

S T H = H S T .

Time invariance is desirable because it eases computation while mirroring our intuition that, all else equal, physical systems should react the same to identical inputs at different times.

When a system exhibits both of these important properties it opens. As will be explained and proven in subsequent modules, computation of the system output for a given input becomes a simple matter of convolving the input with the system's impulse response signal. Also proven later, the fact that complex exponential are eigenvectors of linear time invariant systems will encourage the use of frequency domain tools such as the various Fouier transforms and associated transfer functions, to describe the behavior of linear time invariant systems.

Consider the system H in which

H ( x [ n ] ) = 2 x [ n ]

for all signals f . Given any two signals f , g and scalars a , b

H ( a f [ n ] + b g [ n ] ) ) = 2 ( a f [ n ] + b g [ n ] ) = a 2 f [ n ] + b 2 g [ n ] = a H ( f [ n ] ) + b H ( g [ n ] )

for all integers n . Thus, H is a linear system. For all integers T and signals x ,

S T ( H ( x [ n ] ) ) = S T ( 2 x [ n ] ) = 2 x [ n - T ] = H ( x [ n - T ] ) = H ( S T ( x [ n ] ) )

for all integers n . Thus, H is a time invariant system. Therefore, H is a linear time invariant system.

Got questions? Get instant answers now!

Difference equation representation

It is often useful to to describe systems using equations involving the rate of change in some quantity. For discrete time systems, such equations are called difference equations, a type of recurrence relation. One important class of difference equations is the set of linear constant coefficient difference equations, which are described in more detail in subsequent modules.

Recall that the Fibonacci sequence describes a (very unrealistic) model of what happens when a pair rabbits get left alone in a black box... The assumptions are that a pair of rabbits never die and produce a pair of offspring every month starting on their second month of life. This system is defined by the recursion relation for the number of rabbit pairs y [ n ] at month n

y [ n ] = y [ n - 1 ] + y [ n - 2 ]

with the initial conditions y [ 0 ] = 0 and y [ 1 ] = 1 . The result is a very fast growth in the sequence. This is why we never leave black boxes open.

Got questions? Get instant answers now!

Discrete time systems summary

Many useful discrete time systems will be encountered in a study of signals and systems. This course is most interested in those that demonstrate both the linearity property and the time invariance property, which together enable the use of some of the most powerful tools of signal processing. It is often useful to describe them in terms of rates of change through linear constant coefficient difference equations, a type of recurrence relation.

Questions & Answers

what are components of cells
ofosola Reply
twugzfisfjxxkvdsifgfuy7 it
Sami
58214993
Sami
what is a salt
John
the difference between male and female reproduction
John
what is computed
IBRAHIM Reply
what is biology
IBRAHIM
what is the full meaning of biology
IBRAHIM
what is biology
Jeneba
what is cell
Kuot
425844168
Sami
what is cytoplasm
Emmanuel Reply
structure of an animal cell
Arrey Reply
what happens when the eustachian tube is blocked
Puseletso Reply
what's atoms
Achol Reply
discuss how the following factors such as predation risk, competition and habitat structure influence animal's foraging behavior in essay form
Burnet Reply
cell?
Kuot
location of cervical vertebra
KENNEDY Reply
What are acid
Sheriff Reply
define biology infour way
Happiness Reply
What are types of cell
Nansoh Reply
how can I get this book
Gatyin Reply
what is lump
Chineye Reply
what is cell
Maluak Reply
what is biology
Maluak
what is vertibrate
Jeneba
what's cornea?
Majak Reply
what are cell
Achol
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Signals and systems. OpenStax CNX. Aug 14, 2014 Download for free at http://legacy.cnx.org/content/col10064/1.15
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Signals and systems' conversation and receive update notifications?

Ask