<< Chapter < Page Chapter >> Page >
This module serves as the introduction to Discrete Random Variables in the Elementary Statistics textbook/collection.

Student learning outcomes

By the end of this chapter, the student should be able to:

  • Recognize and understand discrete and continuous probability distribution functions, in general.
  • Calculate and interpret expected values.
  • Recognize the binomial probability distribution and apply it appropriately.
  • Recognize the uniform probability distribution and apply it appropriately.
  • Classify discrete and continuous word problems by their distributions.

Introduction to discrete random variables

A student takes a 10 question true-false quiz. Because the student had such a busy schedule, he or she could not study and randomly guesses at each answer. What is the probability of the student passing the test with at least a 70%?

Small companies might be interested in the number of long distance phone calls their employees make during the peak time of the day. Suppose the average is 20 calls. What is the probability that the employees make more than 20 long distance phone calls during the peak time?

These two examples illustrate two different types of probability problems involving discrete random variables. Recall that discrete data are data that you can count. A random variable describes the outcomes of a statistical experiment in words. The values of a random variable can vary with each repetition of an experiment.

In this chapter, you will study probability problems involving discrete random distributions. You will also study long-term averages associated with them.

Random variable notation

Upper case letters like X or Y denote a random variable. Lower case letters like x or y denote the value of a random variable. If X is a random variable, then X is written in words. and x is given as a number.

For example, let X = the number of heads you get when you toss three fair coins. The sample space for the toss of three fair coins is

  • TTT
  • THH
  • HTH
  • HHT
  • HTT
  • THT
  • TTH
  • HHH
. Then, x = 0, 1, 2, 3. X is in words and x is a number. Notice that for this example, the x values are countable outcomes. Because you can count the possible values that X can take on and the outcomes are random (the x values 0, 1, 2, 3), X is a discrete random variable.

Optional collaborative classroom activity

Toss a coin 10 times and record the number of heads. After all members of the class have completed the experiment (tossed a coin 10 times and counted the number of heads), fill in the chart using a heading like the one below. Let X = the number of heads in 10 tosses of the coin.

x Frequency of x Relative Frequency of x
  • Which value(s) of x occurred most frequently?
  • If you tossed the coin 1,000 times, what values could x take on? Which value(s) of x do you think would occur most frequently?
  • What does the relative frequency column sum to?

Questions & Answers

material that allows electric current to pass through
Deng Reply
material which don't allow electric current is called
Deng
insulators
Covenant
how to study physic and understand
Ewa Reply
what is conservative force with examples
Moses
what is work
Fredrick Reply
the transfer of energy by a force that causes an object to be displaced; the product of the component of the force in the direction of the displacement and the magnitude of the displacement
AI-Robot
why is it from light to gravity
Esther Reply
difference between model and theory
Esther
Is the ship moving at a constant velocity?
Kamogelo Reply
The full note of modern physics
aluet Reply
introduction to applications of nuclear physics
aluet Reply
the explanation is not in full details
Moses Reply
I need more explanation or all about kinematics
Moses
yes
zephaniah
I need more explanation or all about nuclear physics
aluet
Show that the equal masses particles emarge from collision at right angle by making explicit used of fact that momentum is a vector quantity
Muhammad Reply
yh
Isaac
A wave is described by the function D(x,t)=(1.6cm) sin[(1.2cm^-1(x+6.8cm/st] what are:a.Amplitude b. wavelength c. wave number d. frequency e. period f. velocity of speed.
Majok Reply
what is frontier of physics
Somto Reply
A body is projected upward at an angle 45° 18minutes with the horizontal with an initial speed of 40km per second. In hoe many seconds will the body reach the ground then how far from the point of projection will it strike. At what angle will the horizontal will strike
Gufraan Reply
Suppose hydrogen and oxygen are diffusing through air. A small amount of each is released simultaneously. How much time passes before the hydrogen is 1.00 s ahead of the oxygen? Such differences in arrival times are used as an analytical tool in gas chromatography.
Ezekiel Reply
please explain
Samuel
what's the definition of physics
Mobolaji Reply
what is physics
Nangun Reply
the science concerned with describing the interactions of energy, matter, space, and time; it is especially interested in what fundamental mechanisms underlie every phenomenon
AI-Robot
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Collaborative statistics using spreadsheets. OpenStax CNX. Jan 05, 2016 Download for free at http://legacy.cnx.org/content/col11521/1.23
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Collaborative statistics using spreadsheets' conversation and receive update notifications?

Ask