<< Chapter < Page Chapter >> Page >

Let us look back at our values for tan θ

θ 0 30 45 60 90 180
tan θ 0 1 3 1 3 0

Now that we have graphs for sin θ and cos θ , there is an easy way to visualise the tangent graph. Let us look back at our definitions of sin θ and cos θ for a right-angled triangle.

sin θ cos θ = opposite hypotenuse adjacent hypotenuse = opposite adjacent = tan θ

This is the first of an important set of equations called trigonometric identities . An identity is an equation, which holds true for any value which is put into it. In this case we have shown that

tan θ = sin θ cos θ

for any value of θ .

So we know that for values of θ for which sin θ = 0 , we must also have tan θ = 0 . Also, if cos θ = 0 our value of tan θ is undefined as we cannot divide by 0. The graph is shown in [link] . The dashed vertical lines are at the values of θ where tan θ is not defined.

The graph of tan θ .

Functions of the form y = a tan ( x ) + q

In the figure below is an example of a function of the form y = a tan ( x ) + q .

The graph of 2 tan θ + 1 .

Functions of the form y = a tan ( θ ) + q :

  1. On the same set of axes, plot the following graphs:
    1. a ( θ ) = tan θ - 2
    2. b ( θ ) = tan θ - 1
    3. c ( θ ) = tan θ
    4. d ( θ ) = tan θ + 1
    5. e ( θ ) = tan θ + 2
    Use your results to deduce the effect of q .
  2. On the same set of axes, plot the following graphs:
    1. f ( θ ) = - 2 · tan θ
    2. g ( θ ) = - 1 · tan θ
    3. h ( θ ) = 0 · tan θ
    4. j ( θ ) = 1 · tan θ
    5. k ( θ ) = 2 · tan θ
    Use your results to deduce the effect of a .

You should have found that the value of a affects the steepness of each of the branches. The larger the absolute magnitude of a , the quicker the branches approach their asymptotes, the values where they are not defined. Negative a values switch the direction of the branches. You should have also found that the value of q affects the vertical shift as for sin θ and cos θ . These different properties are summarised in [link] .

Table summarising general shapes and positions of graphs of functions of the form y = a tan ( x ) + q .
a > 0 a < 0
q > 0
q < 0

Domain and range

The domain of f ( θ ) = a tan ( θ ) + q is all the values of θ such that cos θ is not equal to 0. We have already seen that when cos θ = 0 , tan θ = sin θ cos θ is undefined, as we have division by zero. We know that cos θ = 0 for all θ = 90 + 180 n , where n is an integer. So the domain of f ( θ ) = a tan ( θ ) + q is all values of θ , except the values θ = 90 + 180 n .

The range of f ( θ ) = a tan θ + q is { f ( θ ) : f ( θ ) ( - , ) } .

Intercepts

The y -intercept, y i n t , of f ( θ ) = a tan ( x ) + q is again simply the value of f ( θ ) at θ = 0 .

y i n t = f ( 0 ) = a tan ( 0 ) + q = a ( 0 ) + q = q

Asymptotes

As θ approaches 90 , tan θ approaches infinity. But as θ is undefined at 90 , θ can only approach 90 , but never equal it. Thus the tan θ curve gets closer and closer to the line θ = 90 , without ever touching it. Thus the line θ = 90 is an asymptote of tan θ . tan θ also has asymptotes at θ = 90 + 180 n , where n is an integer.

Graphs of trigonometric functions

  1. Using your knowldge of the effects of a and q , sketch each of the following graphs, without using a table of values, for θ [ 0 ; 360 ]
    1. y = 2 sin θ
    2. y = - 4 cos θ
    3. y = - 2 cos θ + 1
    4. y = sin θ - 3
    5. y = tan θ - 2
    6. y = 2 cos θ - 1
  2. Give the equations of each of the following graphs:

The following presentation summarises what you have learnt in this chapter. Ignore the last slide.

End of chapter exercises

  1. Calculate the unknown lengths
  2. In the triangle P Q R , P R = 20  cm, Q R = 22  cm and P R ^ Q = 30 . The perpendicular line from P to Q R intersects Q R at X . Calculate
    1. the length X R ,
    2. the length P X , and
    3. the angle Q P ^ X
  3. A ladder of length 15 m is resting against a wall, the base of the ladder is 5 m from the wall. Find the angle between the wall and the ladder?
  4. A ladder of length 25 m is resting against a wall, the ladder makes an angle 37 to the wall. Find the distance between the wall and the base of the ladder?
  5. In the following triangle find the angle A B ^ C
  6. In the following triangle find the length of side C D
  7. A ( 5 ; 0 ) and B ( 11 ; 4 ) . Find the angle between the line through A and B and the x-axis.
  8. C ( 0 ; - 13 ) and D ( - 12 ; 14 ) . Find the angle between the line through C and D and the y-axis.
  9. A 5 m ladder is placed 2 m from the wall. What is the angle the ladder makes with the wall?
  10. Given the points: E(5;0), F(6;2) and G(8;-2), find angle F E ^ G .
  11. An isosceles triangle has sides 9 cm , 9 cm and 2 cm . Find the size of the smallest angle of the triangle.
  12. A right-angled triangle has hypotenuse 13 mm . Find the length of the other two sides if one of the angles of the triangle is 50 .
  13. One of the angles of a rhombus ( rhombus - A four-sided polygon, each of whose sides is of equal length) with perimeter 20 cm is 30 .
    1. Find the sides of the rhombus.
    2. Find the length of both diagonals.
  14. Captain Hook was sailing towards a lighthouse with a height of 10 m .
    1. If the top of the lighthouse is 30 m away, what is the angle of elevation of the boat to the nearest integer?
    2. If the boat moves another 7 m towards the lighthouse, what is the new angle of elevation of the boat to the nearest integer?
  15. (Tricky) A triangle with angles 40 , 40 and 100 has a perimeter of 20 cm . Find the length of each side of the triangle.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Math 1508 (lecture) readings in precalculus. OpenStax CNX. Aug 24, 2011 Download for free at http://cnx.org/content/col11354/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Math 1508 (lecture) readings in precalculus' conversation and receive update notifications?

Ask