Now that we have graphs for
and
, there is an easy way to visualise the tangent graph. Let us look back at our definitions of
and
for a right-angled triangle.
This is the first of an important set of equations called
trigonometric identities . An identity is an equation, which holds true for any value which is put into it. In this case we have shown that
for any value of
.
So we know that for values of
for which
, we must also have
. Also, if
our value of
is undefined as we cannot divide by 0. The graph is shown in
[link] . The dashed vertical lines are at the values of
where
is not defined.
Functions of the form
In the figure below is an example of a function of the form
.
Functions of the form
:
On the same set of axes, plot the following graphs:
Use your results to deduce the effect of
.
On the same set of axes, plot the following graphs:
Use your results to deduce the effect of
.
You should have found that the value of
affects the steepness of each of the branches. The larger the absolute magnitude of
a , the quicker the branches approach their asymptotes, the values where they are not defined. Negative
values switch the direction of the branches.
You should have also found that the value of
affects the vertical shift as for
and
.
These different properties are summarised in
[link] .
Table summarising general shapes and positions of graphs of functions of the form
.
Domain and range
The domain of
is all the values of
such that
is not equal to 0. We have already seen that when
,
is undefined, as we have division by zero. We know that
for all
, where
is an integer. So the domain of
is all values of
, except the values
.
The range of
is
.
Intercepts
The
-intercept,
, of
is again simply the value of
at
.
Asymptotes
As
approaches
,
approaches infinity. But as
is undefined at
,
can only approach
, but never equal it. Thus the
curve gets closer and closer to the line
, without ever touching it. Thus the line
is an asymptote of
.
also has asymptotes at
, where
is an integer.
Graphs of trigonometric functions
Using your knowldge of the effects of
and
, sketch each of the following graphs, without using a table of values, for
Give the equations of each of the following graphs:
The following presentation summarises what you have learnt in this chapter. Ignore the last slide.
End of chapter exercises
Calculate the unknown lengths
In the triangle
,
cm,
cm and
. The perpendicular line from
to
intersects
at
. Calculate
the length
,
the length
, and
the angle
A ladder of length 15 m is resting against a wall, the base of the ladder is 5 m from the wall. Find the angle between the wall and the ladder?
A ladder of length 25 m is resting against a wall, the ladder makes an angle
to the wall. Find the distance between the wall and the base of the ladder?
In the following triangle find the angle
In the following triangle find the length of side
and
. Find the angle between the line through A and B and the x-axis.
and
. Find the angle between the line through C and D and the y-axis.
A
ladder is placed
from the wall. What is the angle the ladder makes with the wall?
Given the points: E(5;0), F(6;2) and G(8;-2), find angle
.
An isosceles triangle has sides
and
. Find the size of the smallest angle of the triangle.
A right-angled triangle has hypotenuse
. Find the length of the other two sides if one of the angles of the triangle is
.
One of the angles of a rhombus (
rhombus - A four-sided polygon, each of whose sides is of equal length) with perimeter
is
.
Find the sides of the rhombus.
Find the length of both diagonals.
Captain Hook was sailing towards a lighthouse with a height of
.
If the top of the lighthouse is
away, what is the angle of elevation of the boat to the nearest integer?
If the boat moves another
towards the lighthouse, what is the new angle of elevation of the boat to the nearest integer?
(Tricky) A triangle with angles
and
has a perimeter of
. Find the length of each side of the triangle.
Questions & Answers
A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?