<< Chapter < Page Chapter >> Page >

Signals occur in a wide range of physical phenomenon. They might be human speech, blood pressure variations with time, seismic waves,radar and sonar signals, pictures or images, stress and strain signals in a building structure, stock market prices, a city'spopulation, or temperature across a plate. These signals are often modeled or represented by a real or complex valued mathematicalfunction of one or more variables. For example, speech is modeled by a function representing air pressure varying with time. Thefunction is acting as a mathematical analogy to the speech signal and, therefore, is called an analog signal. For these signals, the independent variable is time and it changescontinuously so that the term continuous-time signal is also used. In our discussion, we talk of the mathematical function asthe signal even though it is really a model or representation of the physical signal.

The description of signals in terms of their sinusoidal frequency content has proven to be one of the most powerful tools ofcontinuous and discrete-time signal description, analysis, and processing. For that reason, we will start the discussion ofsignals with a development of Fourier transform methods. We will first review the continuous-time methods of the Fourier series (FS),the Fourier transform or integral (FT), and the Laplace transform (LT). Next the discrete-time methods will be developed in moredetail with the discrete Fourier transform (DFT) applied to finite length signals followed by the discrete-time Fourier transform(DTFT) for infinitely long signals and ending with the Z-transform which allows the powerful tools of complex variable theory to beapplied.

More recently, a new tool has been developed for the analysis of signals. Wavelets and wavelet transforms [link] , [link] , [link] , [link] , [link] are another more flexible expansion system that also can describe continuousand discrete-time, finite or infinite duration signals. We will very briefly introduce the ideas behind wavelet-based signal analysis.

The fourier series

The problem of expanding a finite length signal in a trigonometric series was posed and studied in the late 1700's by renowned mathematicians suchas Bernoulli, d'Alembert, Euler, Lagrange, and Gauss. Indeed, what we now call the Fourier series and the formulas for the coefficients were used byEuler in 1780. However, it was the presentation in 1807 and the paper in 1822 by Fourier stating that an arbitrary function could be represented bya series of sines and cosines that brought the problem to everyone's attention and started serious theoretical investigations and practicalapplications that continue to this day [link] , [link] , [link] , [link] , [link] , [link] . The theoretical work has been at the center of analysis and the practical applications havebeen of major significance in virtually every field of quantitative science and technology. For these reasons and others, the Fourier seriesis worth our serious attention in a study of signal processing.

Definition of the fourier series

We assume that the signal x ( t ) to be analyzed is well described by a real or complex valued function of a real variable t defined over a finite interval { 0 t T } . The trigonometric series expansion of x ( t ) is given by

Questions & Answers

if three forces F1.f2 .f3 act at a point on a Cartesian plane in the daigram .....so if the question says write down the x and y components ..... I really don't understand
Syamthanda Reply
hey , can you please explain oxidation reaction & redox ?
Boitumelo Reply
hey , can you please explain oxidation reaction and redox ?
Boitumelo
for grade 12 or grade 11?
Sibulele
the value of V1 and V2
Tumelo Reply
advantages of electrons in a circuit
Rethabile Reply
we're do you find electromagnetism past papers
Ntombifuthi
what a normal force
Tholulwazi Reply
it is the force or component of the force that the surface exert on an object incontact with it and which acts perpendicular to the surface
Sihle
what is physics?
Petrus Reply
what is the half reaction of Potassium and chlorine
Anna Reply
how to calculate coefficient of static friction
Lisa Reply
how to calculate static friction
Lisa
How to calculate a current
Tumelo
how to calculate the magnitude of horizontal component of the applied force
Mogano
How to calculate force
Monambi
a structure of a thermocouple used to measure inner temperature
Anna Reply
a fixed gas of a mass is held at standard pressure temperature of 15 degrees Celsius .Calculate the temperature of the gas in Celsius if the pressure is changed to 2×10 to the power 4
Amahle Reply
How is energy being used in bonding?
Raymond Reply
what is acceleration
Syamthanda Reply
a rate of change in velocity of an object whith respect to time
Khuthadzo
how can we find the moment of torque of a circular object
Kidist
Acceleration is a rate of change in velocity.
Justice
t =r×f
Khuthadzo
how to calculate tension by substitution
Precious Reply
hi
Shongi
hi
Leago
use fnet method. how many obects are being calculated ?
Khuthadzo
khuthadzo hii
Hulisani
how to calculate acceleration and tension force
Lungile Reply
you use Fnet equals ma , newtoms second law formula
Masego
please help me with vectors in two dimensions
Mulaudzi Reply
how to calculate normal force
Mulaudzi
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Digital signal processing and digital filter design (draft). OpenStax CNX. Nov 17, 2012 Download for free at http://cnx.org/content/col10598/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Digital signal processing and digital filter design (draft)' conversation and receive update notifications?

Ask