<< Chapter < Page Chapter >> Page >

Note the derivative of a triangle wave is a square wave. Examine the series coefficients to see this. There are many books and web sites onthe Fourier series that give insight through examples and demos.

Theorems on the fourier series

Four of the most important theorems in the theory of Fourier analysis are the inversion theorem, the convolution theorem, the differentiationtheorem, and Parseval's theorem [link] .

  • The inversion theorem is the truth of the transform pair given in [link] , [link] , and [link] ..
  • The convolution theorem is property 4 .
  • The differentiation theorem says that the transform of the derivative of a function is j ω times the transform of the function.
  • Parseval's theorem is given in property 6 .

All of these are based on the orthogonality of the basis function of the Fourier series and integral and all require knowledge of the convergenceof the sums and integrals. The practical and theoretical use of Fourier analysis is greatly expanded if use is made of distributions orgeneralized functions (e.g. Dirac delta functions, δ ( t ) ) [link] , [link] . Because energy is an important measure of a function in signal processing applications, the Hilbert space of L 2 functions is a proper setting for the basic theory and a geometric view can be especiallyuseful [link] , [link] .

The following theorems and results concern the existence and convergence of the Fourier series and the discrete-time Fourier transform [link] . Details, discussions and proofs can be found in the cited references.

  • If f ( x ) has bounded variation in the interval ( - π , π ) , the Fourier series corresponding to f ( x ) converges to the value f ( x ) at any point within the interval, at which the function is continuous; it converges tothe value 1 2 [ f ( x + 0 ) + f ( x - 0 ) ] at any such point at which the function is discontinuous. At the points π , - π it converges to the value 1 2 [ f ( - π + 0 ) + f ( π - 0 ) ] . [link]
  • If f ( x ) is of bounded variation in ( - π , π ) , the Fourier series converges to f ( x ) , uniformly in any interval ( a , b ) in which f ( x ) is continuous, the continuity at a and b being on both sides. [link]
  • If f ( x ) is of bounded variation in ( - π , π ) , the Fourier series converges to 1 2 [ f ( x + 0 ) + f ( x - 0 ) ] , bounded throughout the interval ( - π , π ) . [link]
  • If f ( x ) is bounded and if it is continuous in its domain at every point, with the exception of a finite number of points at which it mayhave ordinary discontinuities, and if the domain may be divided into a finite number of parts, such that in any one of them the function ismonotone; or, in other words, the function has only a finite number of maxima and minima in its domain, the Fourier series of f ( x ) converges to f ( x ) at points of continuity and to 1 2 [ f ( x + 0 ) + f ( x - 0 ) ] at points of discontinuity. [link] , [link]
  • If f ( x ) is such that, when the arbitrarily small neighborhoods of a finite number of points in whose neighborhood | f ( x ) | has no upper bound have been excluded, f ( x ) becomes a function with bounded variation, then the Fourier series converges to the value 1 2 [ f ( x + 0 ) + f ( x - 0 ) ] , at every point in ( - π , π ) , except the points of infinite discontinuity of the function, provided theimproper integral - π π f ( x ) d x exist, and is absolutely convergent. [link]
  • If f is of bounded variation, the Fourier series of f converges at every point x to the value [ f ( x + 0 ) + f ( x - 0 ) ] / 2 . If f is, in addition, continuous at every point of an interval I = ( a , b ) , its Fourier series is uniformly convergent in I . [link]
  • If a ( k ) and b ( k ) are absolutely summable, the Fourier series converges uniformly to f ( x ) which is continuous. [link]
  • If a ( k ) and b ( k ) are square summable, the Fourier series converges to f ( x ) where it is continuous, but not necessarily uniformly. [link]
  • Suppose that f ( x ) is periodic, of period X , is defined and bounded on [ 0 , X ] and that at least one of the following four conditions is satisfied: (i) f is piecewise monotonic on [ 0 , X ] , (ii) f has a finite number of maxima and minima on [ 0 , X ] and a finite number of discontinuities on [ 0 , X ] , (iii) f is of bounded variation on [ 0 , X ] , (iv) f is piecewise smooth on [ 0 , X ] : then it will follow that the Fourier series coefficients may be defined through the defining integral,using proper Riemann integrals, and that the Fourier series converges to f ( x ) at a.a. x , to f ( x ) at each point of continuity of f , and to the value 1 2 [ f ( x - ) + f ( x + ) ] at all x . [link]
  • For any 1 p < and any f C p ( S 1 ) , the partial sums
    S n = S n ( f ) = | k | n f ^ ( k ) e k
    converge to f , uniformly as n ; in fact, | | S n - f | | is bounded by a constant multiple of n - p + 1 / 2 . [link]

Questions & Answers

what is microbiology
Agebe Reply
What is a cell
Odelana Reply
what is cell
Mohammed
how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Brief notes on signals and systems. OpenStax CNX. Sep 14, 2009 Download for free at http://cnx.org/content/col10565/1.7
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Brief notes on signals and systems' conversation and receive update notifications?

Ask