<< Chapter < Page Chapter >> Page >
An introduction to complex numbers.

While the fundamental signal used in electrical engineering is the sinusoid, it can be expressed mathematically in terms of an even more fundamental signal: the complex exponential . Representing sinusoids in terms of complex exponentials is not a mathematical oddity. Fluency with complex numbers and rational functions of complex variables is a critical skill all engineers master.Understanding information and power system designs and developing new systems all hinge on using complex numbers. In short, they are critical to modern electrical engineering, a realization made over a century ago.

Definitions

The notion of the square root of -1 originated with the quadratic formula: the solution of certain quadratic equations mathematically exists only if the so-called imaginary quantity -1 could be defined. Euler first used i for the imaginary unit but that notation did not take hold untilroughly Ampère's time. Ampère used the symbol i to denote current (intensité de current).It wasn't until the twentieth century that the importance of complex numbers to circuit theory became evident. By then, using i for current was entrenched and electrical engineers chose for writing complex numbers.

An imaginary number has the form b b 2 . A complex number , z , consists of the ordered pair ( a , b ), a is the real component and b is the imaginary component (the is suppressed because the imaginary component of the pair is always in the second position). The imaginary number b equals ( 0 , b ). Note that a and b are real-valued numbers.

[link] shows that we can locate a complex number in what we call the complex plane . Here, a , the real part, is the x -coordinate and b , the imaginary part, is the y -coordinate.

The complex plane

A complex number is an ordered pair ( a , b ) that can be regarded as coordinates in the plane. Complex numbers can also be expressed in polar coordinates as r θ .
From analytic geometry, we know that locations in the plane can be expressed as the sum of vectors, with the vectors corresponding to the x and y directions. Consequently, a complex number z can be expressed as the (vector) sum z a b where indicates the y -coordinate. This representation is known as the Cartesian form of z . An imaginary number can't be numerically added to a real number;rather, this notation for a complex number represents vector addition, but it provides a convenient notation when we perform arithmetic manipulations.

Some obvious terminology. The real part of the complex number z a b , written as z , equals a . We consider the real part as a function that works by selecting that componentof a complex number not multiplied by . The imaginary part of z , z , equals b : that part of a complex number that is multiplied by . Again, both the real and imaginary parts of a complex number are real-valued.

The complex conjugate of z , written as z , has the same real part as z but an imaginary part of the opposite sign.

z z z z z z

Using Cartesian notation, the following properties easily follow.

  • If we add two complex numbers, the real part of the result equals the sum of the real parts and the imaginary part equals the sum of the imaginary parts. This property follows from the laws of vector addition. a 1 b 1 a 2 b 2 a 1 a 2 b 1 b 2 In this way, the real and imaginary parts remain separate.
  • The product of and a real number is an imaginary number: a . The product of and an imaginary number is a real number: b b because 2 1 . Consequently, multiplying a complex number by rotates the number's position by 90 degrees.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Fundamentals of electrical engineering i. OpenStax CNX. Aug 06, 2008 Download for free at http://legacy.cnx.org/content/col10040/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Fundamentals of electrical engineering i' conversation and receive update notifications?

Ask