<< Chapter < Page Chapter >> Page >
This module provides a brief introduction to the Central Limit Theorem.

Student learning outcomes

By the end of this chapter, the student should be able to:

  • Recognize the Central Limit Theorem problems.
  • Classify continuous word problems by their distributions.
  • Apply and interpret the Central Limit Theorem for Means.
  • Apply and interpret the Central Limit Theorem for Sums.

Introduction

Why are we so concerned with means? Two reasons are that they give us a middle ground for comparison and they are easy tocalculate. In this chapter, you will study means and the Central Limit Theorem.

The Central Limit Theorem (CLT for short) is one of the most powerful and useful ideas in all of statistics. Both alternatives are concerned with drawing finitesamples of size n from a population with a known mean, μ , and a known standard deviation, σ . The first alternative says that if we collect samples of size n and n is "large enough," calculate each sample's mean, and create a histogram of those means,then the resulting histogram will tend to have an approximate normal bell shape. The second alternative says that if we again collect samples of size n that are "largeenough," calculate the sum of each sample and create a histogram, then the resulting histogram will again tend to have a normal bell-shape.

In either case, it does not matter what the distribution of the original population is, or whether you even need to know it. The important fact isthat the sample means and the sums tend to follow the normal distribution. And, the rest you will learn in this chapter.

The size of the sample, n , that is required in order to be to be 'large enough' depends on the original population from which the samples are drawn. If the original population is far from normal then more observations are neededfor the sample means or the sample sums to be normal. Sampling is done with replacement.

Optional collaborative classroom activity

Do the following example in class: Suppose 8 of you roll 1 fair die 10 times, 7 of you roll 2 fair dice 10 times, 9 of you roll 5 fair dice 10 times, and 11 of you roll 10 fair dice10 times.

Each time a person rolls more than one die, he/she calculates the sample mean of the faces showing. For example, one person might roll 5 fair dice and get a 2, 2, 3, 4, 6 on oneroll.

The mean is 2 + 2 + 3 + 4 + 6 5 = 3.4 . The 3.4 is one mean when 5 fair dice are rolled. This same person would roll the 5 dice 9 more times and calculate 9 more means for a total of 10 means.

Your instructor will pass out the dice to several people as described above. Roll your dice 10 times. For each roll, record the faces and find the mean. Round to the nearest0.5.

Your instructor (and possibly you) will produce one graph (it might be a histogram) for 1 die, one graph for 2 dice, one graph for 5 dice, and one graph for 10 dice.Since the "mean" when you roll one die, is just the face on the die, what distribution do these means appear to be representing?

Draw the graph for the means using 2 dice. Do the sample means show any kind of pattern?

Draw the graph for the means using 5 dice. Do you see any pattern emerging?

Finally, draw the graph for the means using 10 dice. Do you see any pattern to the graph? What can you conclude as you increase the number of dice?

As the number of dice rolled increases from 1 to 2 to 5 to 10, the following is happening:

  1. The mean of the sample means remains approximately the same.
  2. The spread of the sample means (the standard deviation of the sample means) gets smaller.
  3. The graph appears steeper and thinner.

You have just demonstrated the Central Limit Theorem (CLT).

The Central Limit Theorem tells you that as you increase the number of dice, the sample means tend toward a normal distribution (the sampling distribution).

Questions & Answers

material that allows electric current to pass through
Deng Reply
material which don't allow electric current is called
Deng
insulators
Covenant
how to study physic and understand
Ewa Reply
what is conservative force with examples
Moses
what is work
Fredrick Reply
the transfer of energy by a force that causes an object to be displaced; the product of the component of the force in the direction of the displacement and the magnitude of the displacement
AI-Robot
why is it from light to gravity
Esther Reply
difference between model and theory
Esther
Is the ship moving at a constant velocity?
Kamogelo Reply
The full note of modern physics
aluet Reply
introduction to applications of nuclear physics
aluet Reply
the explanation is not in full details
Moses Reply
I need more explanation or all about kinematics
Moses
yes
zephaniah
I need more explanation or all about nuclear physics
aluet
Show that the equal masses particles emarge from collision at right angle by making explicit used of fact that momentum is a vector quantity
Muhammad Reply
yh
Isaac
A wave is described by the function D(x,t)=(1.6cm) sin[(1.2cm^-1(x+6.8cm/st] what are:a.Amplitude b. wavelength c. wave number d. frequency e. period f. velocity of speed.
Majok Reply
what is frontier of physics
Somto Reply
A body is projected upward at an angle 45° 18minutes with the horizontal with an initial speed of 40km per second. In hoe many seconds will the body reach the ground then how far from the point of projection will it strike. At what angle will the horizontal will strike
Gufraan Reply
Suppose hydrogen and oxygen are diffusing through air. A small amount of each is released simultaneously. How much time passes before the hydrogen is 1.00 s ahead of the oxygen? Such differences in arrival times are used as an analytical tool in gas chromatography.
Ezekiel Reply
please explain
Samuel
what's the definition of physics
Mobolaji Reply
what is physics
Nangun Reply
the science concerned with describing the interactions of energy, matter, space, and time; it is especially interested in what fundamental mechanisms underlie every phenomenon
AI-Robot
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Collaborative statistics using spreadsheets. OpenStax CNX. Jan 05, 2016 Download for free at http://legacy.cnx.org/content/col11521/1.23
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Collaborative statistics using spreadsheets' conversation and receive update notifications?

Ask