<< Chapter < Page Chapter >> Page >
This paper reviews and contrasts the basic elements of statistical decision theory and statistical learning theory. It is not intended to be a comprehensive treatment of either subject, but rather just enough to draw comparisons between the two.

Throughout this module, let X denote the input to a decision-making process and Y denote the correct response or output (e.g., the value of a parameter, the label of a class, the signal of interest). We assume that X and Y are random variables or random vectors with joint distribution P X , Y ( x , y ) , where x and y denote specific values that may be taken by the random variables X and Y , respectively. The observation X is used to make decisions pertaining to the quantity of interest. For thepurposes of illustration, we will focus on the task of determining the value of the quantity of interest. A decision rule for this task is a function f that takes the observation X as input and outputs a prediction of the quantity Y . We denote a decision rule by Y ^ or f ( X ) , when we wish to indicate explicitly the dependence of the decision rule on the observation. Wewill examine techniques for designing decision rules and for analyzing their performance.

Measuring decision accuracy: loss and risk functions

The accuracy of a decision is measured with a loss function. For example, if our goal is to determine the value of Y , then a loss function takes as inputs the true value Y and the predicted value (the decision) Y ^ = f ( X ) and outputs a non-negative real number (the “loss”) reflective of theaccuracy of the decision. Two of the most commonly encountered loss functions include:

  1. 0/1 loss: 0 / 1 ( Y ^ , Y ) = I Y ^ Y , which is the indicator function taking the value of 1 when Y ^ Y and taking the value 0 when Y ^ ( X ) = Y .
  2. squared error loss: 2 ( Y ^ , Y ) = Y ^ - Y 2 2 , which is simply the sum of squared differences between the elements of Y ^ and Y .

The 0/1 loss is commonly used in detection and classification problems, and the squared error loss is more appropriate for problemsinvolving the estimation of a continuous parameter. Note that since the inputs to the loss function may be random variables, so is the loss.

A risk R ( f ) is a function of the decision rule f , and is defined to be the expectation of a loss with respect to the jointdistribution P X , Y ( x , y ) . For example, the expected 0/1 loss produces the probability of error risk function; i.e., a simply calculation shows that R 0 / 1 ( f ) = E [ ( I f ( X ) Y ] = Pr ( f ( X ) Y ) . The expected squared error loss produces the mean squared error MSE risk function, R 2 ( f ) = E [ f ( X ) - Y 2 2 ] .

Optimal decisions are obtained by choosing a decision rule f that minimizes the desired risk function. Given complete knowledge of theprobability distributions involved (e.g., P X , Y ( x , y ) ) one can explicitly or numerically design an optimal decision rule, denoted f * , that minimizes the risk function.

The maximum likelihood principle

The conditional distribution of the observation X given the quantity of interest Y is denoted by P X | Y ( x | y ) . The conditional distribution P X | Y ( x | y ) can be viewed as a generative model, probabilistically describing the observations resulting from a givenvalue, y , of the quantity of interest. For example, if y is the value of a parameter, the P X | Y ( x | y ) is the probability distribution of the observation X when the parameter value is set to y . If X is a continuous random variable with conditional density p X | Y ( x | y ) or a discrete random variable with conditional probability mass function (pmf) p X | Y ( x | y ) , then given a value y we can assess the probability of a particular measurment value y by the magnitude of either the conditional density or pmf.

Questions & Answers

what is defense mechanism
Chinaza Reply
what is defense mechanisms
Chinaza
I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Statistical learning theory. OpenStax CNX. Apr 10, 2009 Download for free at http://cnx.org/content/col10532/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Statistical learning theory' conversation and receive update notifications?

Ask