<< Chapter < Page Chapter >> Page >
  • Explain why a null measurement device is more accurate than a standard voltmeter or ammeter.
  • Demonstrate how a Wheatstone bridge can be used to accurately calculate the resistance in a circuit.

Standard measurements of voltage and current alter the circuit being measured, introducing uncertainties in the measurements. Voltmeters draw some extra current, whereas ammeters reduce current flow. Null measurements balance voltages so that there is no current flowing through the measuring device and, therefore, no alteration of the circuit being measured.

Null measurements are generally more accurate but are also more complex than the use of standard voltmeters and ammeters, and they still have limits to their precision. In this module, we shall consider a few specific types of null measurements, because they are common and interesting, and they further illuminate principles of electric circuits.

The potentiometer

Suppose you wish to measure the emf of a battery. Consider what happens if you connect the battery directly to a standard voltmeter as shown in [link] . (Once we note the problems with this measurement, we will examine a null measurement that improves accuracy.) As discussed before, the actual quantity measured is the terminal voltage V size 12{V} {} , which is related to the emf of the battery by V = emf Ir size 12{V="emf" - ital "Ir"} {} , where I size 12{I} {} is the current that flows and r size 12{r} {} is the internal resistance of the battery.

The emf could be accurately calculated if r size 12{r} {} were very accurately known, but it is usually not. If the current I size 12{I} {} could be made zero, then V = emf size 12{V="emf"} {} , and so emf could be directly measured. However, standard voltmeters need a current to operate; thus, another technique is needed.

The diagram shows equivalence between two circuits. The first circuit has a cell of e m f script E and an internal resistance r connected across a voltmeter. The equivalent circuit on the right shows the same cell of e m f script E and an internal resistance r connected across a series combination of a galvanometer with an internal resistance r sub G and high resistance R. The currents in the two circuits are shown to be equal.
An analog voltmeter attached to a battery draws a small but nonzero current and measures a terminal voltage that differs from the emf of the battery. (Note that the script capital E symbolizes electromotive force, or emf.) Since the internal resistance of the battery is not known precisely, it is not possible to calculate the emf precisely.

A potentiometer    is a null measurement device for measuring potentials (voltages). (See [link] .) A voltage source is connected to a resistor R, say, a long wire, and passes a constant current through it. There is a steady drop in potential (an IR size 12{ ital "IR"} {} drop) along the wire, so that a variable potential can be obtained by making contact at varying locations along the wire.

[link] (b) shows an unknown emf x size 12{"emf" rSub { size 8{x} } } {} (represented by script E x size 12{"emf" rSub { size 8{x} } } {} in the figure) connected in series with a galvanometer. Note that emf x size 12{"emf" rSub { size 8{x} } } {} opposes the other voltage source. The location of the contact point (see the arrow on the drawing) is adjusted until the galvanometer reads zero. When the galvanometer reads zero, emf x = IR x size 12{"emf" rSub { size 8{x} } = ital "IR" rSub { size 8{x} } } {} , where R x size 12{R rSub { size 8{x} } } {} is the resistance of the section of wire up to the contact point. Since no current flows through the galvanometer, none flows through the unknown emf, and so emf x size 12{"emf" rSub { size 8{x} } } {} is directly sensed.

Now, a very precisely known standard emf s size 12{"emf" rSub { size 8{s} } } {} is substituted for emf x size 12{"emf" rSub { size 8{x} } } {} , and the contact point is adjusted until the galvanometer again reads zero, so that emf s = IR s size 12{"emf" rSub { size 8{s} } = ital "IR" rSub { size 8{s} } } {} . In both cases, no current passes through the galvanometer, and so the current I size 12{I} {} through the long wire is the same. Upon taking the ratio emf x emf s size 12{ { {"emf" rSub { size 8{x} } } over {"emf" rSub { size 8{s} } } } } {} , I size 12{I} {} cancels, giving

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 5

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics (engineering physics 2, tuas). OpenStax CNX. May 08, 2014 Download for free at http://legacy.cnx.org/content/col11649/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics (engineering physics 2, tuas)' conversation and receive update notifications?

Ask