<< Chapter < Page Chapter >> Page >
  • Explain the differences and similarities between AC and DC current.
  • Calculate rms voltage, current, and average power.
  • Explain why AC current is used for power transmission.

Why use ac for power distribution?

Most large power-distribution systems are AC. Moreover, the power is transmitted at much higher voltages than the 120-V AC (240 V in most parts of the world) we use in homes and on the job. Economies of scale make it cheaper to build a few very large electric power-generation plants than to build numerous small ones. This necessitates sending power long distances, and it is obviously important that energy losses en route be minimized. High voltages can be transmitted with much smaller power losses than low voltages, as we shall see. (See [link] .) For safety reasons, the voltage at the user is reduced to familiar values. The crucial factor is that it is much easier to increase and decrease AC voltages than DC, so AC is used in most large power distribution systems.

Photograph of transformers installed in transmission lines.
Power is distributed over large distances at high voltage to reduce power loss in the transmission lines. The voltages generated at the power plant are stepped up by passive devices called transformers (see Transformers ) to 330,000 volts (or more in some places worldwide). At the point of use, the transformers reduce the voltage transmitted for safe residential and commercial use. (Credit: GeorgHH, Wikimedia Commons)

Power losses are less for high-voltage transmission

(a) What current is needed to transmit 100 MW of power at 200 kV? (b) What is the power dissipated by the transmission lines if they have a resistance of 1 . 00 Ω size 12{1 "." "00" %OMEGA } {} ? (c) What percentage of the power is lost in the transmission lines?

Strategy

We are given P = 100 MW size 12{P rSub { size 8{"ave"} } ="100"`"MW"} {} , V = 200 kV size 12{V rSub { size 8{"rms"} } ="200"`"kV"} {} , and the resistance of the lines is R = 1 . 00 Ω size 12{R=1 "." "00"` %OMEGA } {} . Using these givens, we can find the current flowing (from P = IV size 12{P = ital "IV"} {} ) and then the power dissipated in the lines ( P = I 2 R size 12{P = I rSup { size 8{2} } R} {} ), and we take the ratio to the total power transmitted.

Solution

To find the current, we rearrange the relationship P = I V size 12{P rSub { size 8{"ave"} } = I rSub { size 8{"rms"} } V rSub { size 8{"rms"} } } {} and substitute known values. This gives

I = P V = 100 × 10 6 W 200 × 10 3 V = 500 A . size 12{I rSub { size 8{"rms"} } = { {P rSub { size 8{"ave"} } } over {V rSub { size 8{"rms"} } } } = { {"100 " times " 10" rSup { size 8{6} } " W"} over {"200 " times " 10" rSup { size 8{3} } " V"} } =" 500 A"} {}

Knowing the current and given the resistance of the lines, the power dissipated in them is found from P = I 2 R size 12{P = I rSup { size 8{2} } R} {} . Substituting the known values gives

The percent loss is the ratio of this lost power to the total or input power, multiplied by 100:

P = I 2 R = ( 500 A ) 2 ( 1 . 00 Ω ) = 250 kW . size 12{P rSub { size 8{"ave"} } = I rSub { size 8{"rms"} } rSup { size 8{2} } R = \( "500 A" \) rSup { size 8{2} } \( 1 "." "00 " %OMEGA \) =" 250 kW"} {}

Discussion

One-fourth of a percent is an acceptable loss. Note that if 100 MW of power had been transmitted at 25 kV, then a current of 4000 A would have been needed. This would result in a power loss in the lines of 16.0 MW, or 16.0% rather than 0.250%. The lower the voltage, the more current is needed, and the greater the power loss in the fixed-resistance transmission lines. Of course, lower-resistance lines can be built, but this requires larger and more expensive wires. If superconducting lines could be economically produced, there would be no loss in the transmission lines at all. But, as we shall see in a later chapter, there is a limit to current in superconductors, too. In short, high voltages are more economical for transmitting power, and AC voltage is much easier to raise and lower, so that AC is used in most large-scale power distribution systems.

It is widely recognized that high voltages pose greater hazards than low voltages. But, in fact, some high voltages, such as those associated with common static electricity, can be harmless. So it is not voltage alone that determines a hazard. It is not so widely recognized that AC shocks are often more harmful than similar DC shocks. Thomas Edison thought that AC shocks were more harmful and set up a DC power-distribution system in New York City in the late 1800s. There were bitter fights, in particular between Edison and George Westinghouse and Nikola Tesla, who were advocating the use of AC in early power-distribution systems. AC has prevailed largely due to transformers and lower power losses with high-voltage transmission.

Phet explorations: generator

Generate electricity with a bar magnet! Discover the physics behind the phenomena by exploring magnets and how you can use them to make a bulb light.

Generator

Conceptual questions

Give an example of a use of AC power other than in the household. Similarly, give an example of a use of DC power other than that supplied by batteries.

Problem exercises

A small office-building air conditioner operates on 408-V AC and consumes 50.0 kW. (a) What is its effective resistance? (b) What is the cost of running the air conditioner during a hot summer month when it is on 8.00 h per day for 30 days and electricity costs 9.00 cents /kW h size 12{9 "." "00"" cents/kw" cdot h} {} ?

What is the peak power consumption of a 120-V AC microwave oven that draws 10.0 A?

2.40 kW

What is the peak current through a 500-W room heater that operates on 120-V AC power?

Two different electrical devices have the same power consumption, but one is meant to be operated on 120-V AC and the other on 240-V AC. (a) What is the ratio of their resistances? (b) What is the ratio of their currents? (c) Assuming its resistance is unaffected, by what factor will the power increase if a 120-V AC device is connected to 240-V AC?

(a) 3.36

(b) 0.545

(c) 3.36

Nichrome wire is used in some radiative heaters. (a) Find the resistance needed if the average power output is to be 1.00 kW utilizing 120-V AC. (b) What length of Nichrome wire, having a cross-sectional area of 5.00 mm 2 size 12{5 "." "00"" mm" rSup { size 8{2} } } {} , is needed if the operating temperature is 500º C size 12{"500"°C} {} ? (c) What power will it draw when first switched on?

Find the time after t = 0 size 12{t=0} {} when the instantaneous voltage of 60-Hz AC first reaches the following values: (a) V 0 / 2 size 12{V rSub { size 8{0} } /2} {} (b) V 0 size 12{V rSub { size 8{0} } } {} (c) 0.

(a) 1.39 ms

(b) 4.17 ms

(c) 8.33 ms

Questions & Answers

what is microbiology
Agebe Reply
What is a cell
Odelana Reply
what is cell
Mohammed
how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 6

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Abe advanced level physics. OpenStax CNX. Jul 11, 2013 Download for free at http://legacy.cnx.org/content/col11534/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Abe advanced level physics' conversation and receive update notifications?

Ask