<< Chapter < Page Chapter >> Page >

As the example implies, gravitational force is completely negligible on a small scale, where the interactions of individual charged particles are important. On a large scale, such as between the Earth and a person, the reverse is true. Most objects are nearly electrically neutral, and so attractive and repulsive Coulomb forces nearly cancel. Gravitational force on a large scale dominates interactions between large objects because it is always attractive, while Coulomb forces tend to cancel.

Section summary

  • Frenchman Charles Coulomb was the first to publish the mathematical equation that describes the electrostatic force between two objects.
  • Coulomb’s law gives the magnitude of the force between point charges. It is
    F = k | q 1 q 2 | r 2 , size 12{F=k { {q rSub { size 8{1} } q rSub { size 8{2} } } over {r rSup { size 8{2} } } } } {}

    where q 1 and q 2 are two point charges separated by a distance r , and k 8.99 × 10 9 N · m 2 / C 2

  • This Coulomb force is extremely basic, since most charges are due to point-like particles. It is responsible for all electrostatic effects and underlies most macroscopic forces.
  • The Coulomb force is extraordinarily strong compared with the gravitational force, another basic force—but unlike gravitational force it can cancel, since it can be either attractive or repulsive.
  • The electrostatic force between two subatomic particles is far greater than the gravitational force between the same two particles.

Conceptual questions

[link] shows the charge distribution in a water molecule, which is called a polar molecule because it has an inherent separation of charge. Given water’s polar character, explain what effect humidity has on removing excess charge from objects.

A schematic representation of the outer electron cloud of a neutral water molecule is shown. Three atoms are placed on the vertices of a triangle. The hydrogen atom has positive q charge and the oxygen atom has minus two q charge, and the angle between the line joining each hydrogen atom with the oxygen atom is one hundred and four degrees. The cloud density is shown more at the oxygen atom.
Schematic representation of the outer electron cloud of a neutral water molecule. The electrons spend more time near the oxygen than the hydrogens, giving a permanent charge separation as shown. Water is thus a polar molecule . It is more easily affected by electrostatic forces than molecules with uniform charge distributions.

Using [link] , explain, in terms of Coulomb’s law, why a polar molecule (such as in [link] ) is attracted by both positive and negative charges.

Given the polar character of water molecules, explain how ions in the air form nucleation centers for rain droplets.

Problems&Exercises

What is the repulsive force between two pith balls that are 8.00 cm apart and have equal charges of – 30.0 nC?

(a) How strong is the attractive force between a glass rod with a 0.700 μ C charge and a silk cloth with a –0.600 μ C charge, which are 12.0 cm apart, using the approximation that they act like point charges? (b) Discuss how the answer to this problem might be affected if the charges are distributed over some area and do not act like point charges.

(a) 0.263 N

(b) If the charges are distributed over some area, there will be a concentration of charge along the side closest to the oppositely charged object. This effect will increase the net force.

Two point charges exert a 5.00 N force on each other. What will the force become if the distance between them is increased by a factor of three?

Two point charges are brought closer together, increasing the force between them by a factor of 25. By what factor was their separation decreased?

The separation decreased by a factor of 5.

Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Introductory physics - for kpu phys 1100 (2015 edition). OpenStax CNX. May 30, 2015 Download for free at http://legacy.cnx.org/content/col11588/1.13
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Introductory physics - for kpu phys 1100 (2015 edition)' conversation and receive update notifications?

Ask