<< Chapter < Page Chapter >> Page >

Penetrating ability of electromagnetic radiation

Different kinds of electromagnetic radiation have different penetrabilities. For example, if we take the human body as the object. Infrared light is emitted by the human body. Visible light is reflected off the surface of the human body, ultra-violet light (from sunlight) damages the skin, but X-rays are able to penetrate the skin and bone and allow for pictures of the inside of the human body to be taken.

If we compare the energy of visible light to the energy of X-rays, we find that X-rays have a much higher energy. Usually, kinds of electromagnetic radiation with higher energy have higher penetrabilities than those with low energies.

Certain kinds of electromagnetic radiation such as ultra-violet radiation, X-rays and gamma rays are very dangerous. Radiation such as these are called ionising radiation. Ionising radiation transfers energy as it passes through matter, breaking molecular bonds and creating ions.

Excessive exposure to radiation, including sunlight, X-rays and all nuclear radiation, can cause destruction of biological tissue. Luckily, the Earth's atmosphere protects us and other living beings on Earth from most of the harmful EM radiation.

Ultraviolet(uv) radiation and the skin

UVA and UVB are different ranges of frequencies for ultraviolet (UV) light. UVA and UVB can damage collagen fibres which results in the speeding up skin aging. In general, UVA is the least harmful, but it can contribute to the aging of skin, DNA damage and possibly skin cancer. It penetrates deeply and does not cause sunburn. Because it does not cause reddening of the skin (erythema) it cannot be measured in the SPF testing. There is no good clinical measurement of the blocking of UVA radiation, but it is important that sunscreen block both UVA and UVB.

UVB light can cause skin cancer. The radiation excites DNA molecules in skin cells, resulting in possible mutations, which can cause cancer. In particular, the layer of ozone in the atmosphere protects us from UVB radiation. The connection between UVB radiation and cancer is one of the reasons for concern about the depletion of ozone in the atmosphere.

As a defense against UV radiation, the body tans when exposed to moderate (depending on skin type) levels of radiation by releasing the brown pigment melanin. This helps to block UV penetration and prevent damage to the vulnerable skin tissue deeper down. Sun-tan lotion, often referred to as sunblock or sunscreen, partly blocks UV radiation and is widely available. These products have a sun protection factor (SPF) rating (usually indicated on the container) that indicate how much protection the product provides against UVB radiation. The SPF rating does not specify protection against UVA radiation, which penetrates deeper into the skin and cause damage to the underlying tissue, which can (in turn) cause wrinkles and increases the risk of cancer. Some sunscreen lotion now includes compounds such as titanium dioxide which helps protect against UVA rays. Other UVA blocking compounds found in sunscreen include zinc oxide and avobenzone.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Siyavula textbooks: grade 10 physical science [caps]. OpenStax CNX. Sep 30, 2011 Download for free at http://cnx.org/content/col11305/1.7
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Siyavula textbooks: grade 10 physical science [caps]' conversation and receive update notifications?

Ask