<< Chapter < Page Chapter >> Page >
  • Observe the kinematics of rotational motion.
  • Derive rotational kinematic equations.
  • Evaluate problem solving strategies for rotational kinematics.

Just by using our intuition, we can begin to see how rotational quantities like θ size 12{θ} {} , ω size 12{ω} {} , and α size 12{α} {} are related to one another. For example, if a motorcycle wheel has a large angular acceleration for a fairly long time, it ends up spinning rapidly and rotates through many revolutions. In more technical terms, if the wheel’s angular acceleration α size 12{α} {} is large for a long period of time t size 12{α} {} , then the final angular velocity ω size 12{ω} {} and angle of rotation θ size 12{θ} {} are large. The wheel’s rotational motion is exactly analogous to the fact that the motorcycle’s large translational acceleration produces a large final velocity, and the distance traveled will also be large.

Kinematics is the description of motion. The kinematics of rotational motion    describes the relationships among rotation angle, angular velocity, angular acceleration, and time. Let us start by finding an equation relating ω size 12{ω} {} , α size 12{α} {} , and t size 12{t} {} . To determine this equation, we recall a familiar kinematic equation for translational, or straight-line, motion:

v = v 0 + at       ( constant  a ) size 12{v=v rSub { size 8{0} } + ital "at"" " \[ "constant "a \] } {}

Note that in rotational motion a = a t size 12{a=a rSub { size 8{t} } } {} , and we shall use the symbol a size 12{a} {} for tangential or linear acceleration from now on. As in linear kinematics, we assume a size 12{a} {} is constant, which means that angular acceleration α size 12{α} {} is also a constant, because a = size 12{a=rα} {} . Now, let us substitute v = size 12{v=rω} {} and a = size 12{a=rα} {} into the linear equation above:

= 0 + rαt . size 12{rω=rω rSub { size 8{0} } +rαt} {}

The radius r size 12{r} {} cancels in the equation, yielding

ω = ω 0 + at       ( constant  a ) , size 12{ω=ω rSub { size 8{0} } + ital "at"" " \[ "constant "a \] ,} {}

where ω 0 size 12{ω rSub { size 8{0} } } {} is the initial angular velocity. This last equation is a kinematic relationship among ω size 12{ω} {} , α size 12{α} {} , and t size 12{t} {} —that is, it describes their relationship without reference to forces or masses that may affect rotation. It is also precisely analogous in form to its translational counterpart.

Making connections

Kinematics for rotational motion is completely analogous to translational kinematics, first presented in One-Dimensional Kinematics . Kinematics is concerned with the description of motion without regard to force or mass. We will find that translational kinematic quantities, such as displacement, velocity, and acceleration have direct analogs in rotational motion.

Starting with the four kinematic equations we developed in One-Dimensional Kinematics , we can derive the following four rotational kinematic equations (presented together with their translational counterparts):

Rotational kinematic equations
Rotational Translational
θ = ω ¯ t size 12{θ= {overline {ωt}} } {} x = v - t size 12{x= { bar {v}}t} {}
ω = ω 0 + αt size 12{ω=ω rSub { size 8{0} } +αt} {} v = v 0 + at size 12{v=v rSub { size 8{0} } + ital "at"} {} (constant α size 12{α} {} , a size 12{a} {} )
θ = ω 0 t + 1 2 αt 2 size 12{θ=ω rSub { size 8{0} } t+ { {1} over {2} } αt rSup { size 8{2} } } {} x = v 0 t + 1 2 at 2 size 12{x=v rSub { size 8{0} } t+ { {1} over {2} } ital "at" rSup { size 8{2} } } {} (constant α size 12{α} {} , a size 12{a} {} )
ω 2 = ω 0 2 + 2 αθ size 12{ω rSup { size 8{2} } =ω rSub { size 8{0} rSup { size 8{2} } } +2 ital "αθ"} {} v 2 = v 0 2 + 2 ax (constant α , a )

In these equations, the subscript 0 denotes initial values ( θ 0 size 12{θ rSub { size 8{0} } } {} , x 0 size 12{x rSub { size 8{0} } } {} , and t 0 size 12{t rSub { size 8{0} } } {} are initial values), and the average angular velocity ω - size 12{ { bar {ω}}} {} and average velocity v - size 12{ { bar {v}}} {} are defined as follows:

ω ¯ = ω 0 + ω 2  and  v ¯ = v 0 + v 2 . size 12{ {overline {ω}} = { {ω rSub { size 8{0} } +ω} over {2} } " and " {overline {v}} = { {v rSub { size 8{0} } +v} over {2} } " " \( "constant "α, a \) } {}

The equations given above in [link] can be used to solve any rotational or translational kinematics problem in which a size 12{a} {} and α size 12{α} {} are constant.

Problem-solving strategy for rotational kinematics

  1. Examine the situation to determine that rotational kinematics (rotational motion) is involved . Rotation must be involved, but without the need to consider forces or masses that affect the motion.
  2. Identify exactly what needs to be determined in the problem (identify the unknowns) . A sketch of the situation is useful.
  3. Make a list of what is given or can be inferred from the problem as stated (identify the knowns) .
  4. Solve the appropriate equation or equations for the quantity to be determined (the unknown) . It can be useful to think in terms of a translational analog because by now you are familiar with such motion.
  5. Substitute the known values along with their units into the appropriate equation, and obtain numerical solutions complete with units . Be sure to use units of radians for angles.
  6. Check your answer to see if it is reasonable: Does your answer make sense ?

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 1

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics 101. OpenStax CNX. Jan 07, 2013 Download for free at http://legacy.cnx.org/content/col11479/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics 101' conversation and receive update notifications?

Ask