<< Chapter < Page Chapter >> Page >

Many crystals and solutions rotate the plane of polarization of light passing through them. Such substances are said to be optically active    . Examples include sugar water, insulin, and collagen (see [link] ). In addition to depending on the type of substance, the amount and direction of rotation depends on a number of factors. Among these is the concentration of the substance, the distance the light travels through it, and the wavelength of light. Optical activity is due to the asymmetric shape of molecules in the substance, such as being helical. Measurements of the rotation of polarized light passing through substances can thus be used to measure concentrations, a standard technique for sugars. It can also give information on the shapes of molecules, such as proteins, and factors that affect their shapes, such as temperature and pH.

The schematic shows an initially unpolarized ray of light that passes through three optical elements. The first is a vertical polarizer, so the electric field is vertical after the ray passes through it. Next comes a block that is labeled optically active. Following this block the electric field has been rotated by an angle theta with respect to the vertical. In the schematic this angle is about forty five degrees. Finally, the ray passes through another vertical polarizer that is labeled analyzer. A shorter and vertically oriented electric field appears after this element.
Optical activity is the ability of some substances to rotate the plane of polarization of light passing through them. The rotation is detected with a polarizing filter or analyzer.

Glass and plastic become optically active when stressed; the greater the stress, the greater the effect. Optical stress analysis on complicated shapes can be performed by making plastic models of them and observing them through crossed filters, as seen in [link] . It is apparent that the effect depends on wavelength as well as stress. The wavelength dependence is sometimes also used for artistic purposes.

The figure shows a photograph of a transparent circular plastic lens that is being pinched between clamp fingers. The lens is deformed and rainbows of colors are visible whose outlines roughly follow the deformation of the object.
Optical stress analysis of a plastic lens placed between crossed polarizers. (credit: Infopro, Wikimedia Commons)

Another interesting phenomenon associated with polarized light is the ability of some crystals to split an unpolarized beam of light into two. Such crystals are said to be birefringent    (see [link] ). Each of the separated rays has a specific polarization. One behaves normally and is called the ordinary ray, whereas the other does not obey Snell’s law and is called the extraordinary ray. Birefringent crystals can be used to produce polarized beams from unpolarized light. Some birefringent materials preferentially absorb one of the polarizations. These materials are called dichroic and can produce polarization by this preferential absorption. This is fundamentally how polarizing filters and other polarizers work. The interested reader is invited to further pursue the numerous properties of materials related to polarization.

The schematic shows an unpolarized ray of light incident on a block of transparent material The ray is perpendicular to the face of the material. Upon entering the material, part of the ray continues straight on. This ray is horizontally polarized and is labeled o. Another part of the incident ray is deviated at an angle upon entering the material. This ray is vertically polarized and is labeled e.
Birefringent materials, such as the common mineral calcite, split unpolarized beams of light into two. The ordinary ray behaves as expected, but the extraordinary ray does not obey Snell’s law.

Section summary

  • Polarization is the attribute that wave oscillations have a definite direction relative to the direction of propagation of the wave.
  • EM waves are transverse waves that may be polarized.
  • The direction of polarization is defined to be the direction parallel to the electric field of the EM wave.
  • Unpolarized light is composed of many rays having random polarization directions.
  • Light can be polarized by passing it through a polarizing filter or other polarizing material. The intensity of polarized light after passing through a polarizing filter depends on the direction of polarization and the axis of the filter.
  • Polarization is also produced by reflection.
  • Polarization can also be produced by scattering.
  • There are a number of types of optically active substances that rotate the direction of polarization of light passing through them.

Conceptual questions

Under what circumstances is the phase of light changed by reflection? Is the phase related to polarization?

Can a sound wave in air be polarized? Explain.

No light passes through two perfect polarizing filters with perpendicular axes. However, if a third polarizing filter is placed between the original two, some light can pass. Why is this? Under what circumstances does most of the light pass?

Explain what happens to the energy carried by light that it is dimmed by passing it through two crossed polarizing filters.

When particles scattering light are much smaller than its wavelength, the amount of scattering is proportional to 1 / λ 4 size 12{1/λ rSup { size 8{4} } } {} . Does this mean there is more scattering for small λ size 12{λ} {} than large λ size 12{λ} {} ? How does this relate to the fact that the sky is blue?

Using the information given in the preceding question, explain why sunsets are red.

Practice Key Terms 9

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Concepts of physics. OpenStax CNX. Aug 25, 2015 Download for free at https://legacy.cnx.org/content/col11738/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Concepts of physics' conversation and receive update notifications?

Ask