<< Chapter < Page Chapter >> Page >
  • Describe methods to produce an electromotive force (emf) with a magnetic field or magnet and a loop of wire.

The apparatus used by Faraday to demonstrate that magnetic fields can create currents is illustrated in [link] . When the switch is closed, a magnetic field is produced in the coil on the top part of the iron ring and transmitted to the coil on the bottom part of the ring. The galvanometer is used to detect any current induced in the coil on the bottom. It was found that each time the switch is closed, the galvanometer detects a current in one direction in the coil on the bottom. Each time the switch is opened, the galvanometer detects a current in the opposite direction. Interestingly, if the switch remains closed or open for any length of time, there is no current through the galvanometer. Closing and opening the switch induces the current. It is the change in magnetic field that creates the current. More basic than the current that flows is the voltage that causes it. The current is a result of an voltage induced by a changing magnetic field , whether or not there is a path for current to flow.

The picture shows Faraday’s apparatus for demonstrating that a magnetic field can produce a current. It consists of a cylinder shaped battery. The positive end of the battery is connected to an open switch. There is a ring shaped iron core consisting of a set of coils one on the top and another at the bottom. The other end of the switch is connected to one end of the top coil. The other end of the top coil is connected back to the battery. Both the ends of the bottom coil are shown connected across a galvanometer box which shows a null deflection.
Faraday’s apparatus for demonstrating that a magnetic field can produce a current. A change in the field produced by the top coil induces an voltage and, hence, a current in the bottom coil. When the switch is opened and closed, the galvanometer registers currents in opposite directions. No current flows through the galvanometer when the switch remains closed or open.

An experiment easily performed and often done in physics labs is illustrated in [link] . A voltage is induced in the coil when a bar magnet is pushed in and out of it. Voltages of opposite signs are produced by motion in opposite directions, and the voltages are also reversed by reversing poles. The same results are produced if the coil is moved rather than the magnet—it is the relative motion that is important. The faster the motion, the greater the voltage, and there is no voltage when the magnet is stationary relative to the coil.

The diagram shows five stages of an experiment done by moving a magnet relative to a coil and measuring the e m f produced. The first stage of the experiment shows a wire coil with two loops connected across a galvanometer. The loop is in horizontal plane. A cylindrical rod shaped magnet is moved upward through the loop with the north pole of the magnet facing the loop and the South Pole away from the loop. The magnetic lines of force of the magnet are shown to emerge out from the North Pole and intersect the coil. A current is shown to be induced in the coil in clockwise direction. The galvanometer needle is shown to deflect toward right. The second stage of the experiment shows the next state of the first stage of the experiment. The cylindrical rod shaped magnet is now moved downward away from the loop with the north pole of the magnet facing the loop and South Pole away from the loop. The magnetic lines of force of the magnet are shown to emerge out from the North Pole and intersect the coil. A current is shown to be induced in the coil in anti clockwise direction. The galvanometer needle is shown to deflect toward left. The third stage of the experiment shows a wire coil with two loops connected across a galvanometer. The loop is in horizontal plane. A cylindrical rod shaped magnet is moved upward through the loop with the south pole of the magnet facing the loop and the North Pole away from the loop. The magnetic lines of force of the magnet are shown to merge into the South Pole and intersect the coil. A current is shown to be induced in the coil in anti clockwise direction. The galvanometer needle is shown to deflect toward left. The fourth stage of the experiment shows the next state of the third stage of the experiment. The cylindrical rod shaped magnet is now moved downward away from the loop with the south pole of the magnet facing the loop and the North Pole away from the loop. The magnetic lines of force of the magnet are shown to merge into the South Pole and intersect the coil. A current is shown to be induced in the coil in clockwise direction. The galvanometer needle is shown to deflect toward right. The fifth stage of the experiment shows a wire coil with two loops connected across a galvanometer. The loop is in horizontal plane. A cylindrical rod shaped magnet is held stationary near the loop with the north pole of the magnet facing the loop and south away from the loop. The magnetic lines of force of the magnet are shown to emerge out from the North Pole and intersect the coil. No current is induced in the coil. The galvanometer needle does not deflect.
Movement of a magnet relative to a coil produces voltage as shown. The same voltages are produced if the coil is moved relative to the magnet. The greater the speed, the greater the magnitude of the voltage, and the voltage is zero when there is no motion.

The method of inducing a voltage used in most electric generators is shown in [link] . A coil is rotated in a magnetic field, producing an alternating voltage (and current), which depends on rotation rate and other factors that will be explored in later sections. Note that the generator is remarkably similar in construction to a motor.

The figure shows a schematic diagram of an electric generator. It consists of a rotating rectangular coil placed between the two poles of a permanent magnet shown as two rectangular blocks curved on side facing the coil. The magnetic field B is shown pointing from the North to the South Pole. The two ends of this coil are connected to the two small rings. The two conducting carbon brushes are kept pressed separately on both the rings. The coil is attached to an axle with a handle at the other end. The axle may be mechanically rotated from outside to rotate the coil inside the magnetic field. Outer ends of the two brushes are connected to the galvanometer. A current is shown to flow in the coil in anti clockwise direction and the galvanometer shows a deflection.
Rotation of a coil in a magnetic field produces a voltage. This is the basic construction of a generator, where work done to turn the coil is converted to electric energy. Note the generator is very similar in construction to a motor.

So we see that changing the magnitude or direction of a magnetic field produces a voltage. Experiments revealed that there is a crucial quantity called the magnetic flux    , Φ size 12{Φ} {} , given by

Φ = B A ,

where B size 12{B} {} is the magnetic field strength over an area A size 12{A} {} , at an angle θ with the perpendicular to the area as shown in [link] . Any change in magnetic flux Φ size 12{Φ} {} induces a voltage. This process is defined to be electromagnetic induction    . Units of magnetic flux Φ size 12{Φ} {} are T m 2 size 12{T cdot m rSup { size 8{2} } } {} .

Figure shows a flat square shaped surface A. The magnetic field B is shown to act on the surface at an angle theta with the normal to the surface A. The cosine component of magnetic field B cos theta is shown to act parallel to the normal to the surface.
Magnetic flux Φ is related to the magnetic field and the area A over which it exists. Only the portion of the magnetic field that is perpendicular to the area ( B ) contributes to the flux. The flux Φ = B A is related to induction; any change in Φ induces a voltage.

All induction, including the examples given so far, arises from some change in magnetic flux Φ size 12{Φ} {} . For example, Faraday changed B size 12{B} {} and hence Φ size 12{Φ} {} when opening and closing the switch in his apparatus (shown in [link] ). This is also true for the bar magnet and coil shown in [link] . When rotating the coil of a generator, the angle θ size 12{θ} {} and, hence, Φ size 12{Φ} {} is changed. Just how great a voltage and what direction it takes depend on the change in Φ size 12{Φ} {} and how rapidly the change is made, as examined in the next section.

Section summary

  • The crucial quantity in induction is magnetic flux Φ , defined to be Φ = B A , where B is the magnetic field strength perpendicular to the area A .
  • Units of magnetic flux Φ size 12{Φ} {} are T m 2 size 12{T cdot m rSup { size 8{2} } } {} .
  • Any change in magnetic flux Φ size 12{Φ} {} induces a voltage—the process is defined to be electromagnetic induction.

Conceptual questions

How do the multiple-loop coils and iron ring in the version of Faraday’s apparatus shown in [link] enhance the observation of induced voltage?

When a magnet is thrust into a coil as in [link] (a), what is the direction of the force exerted by the coil on the magnet? Draw a diagram showing the direction of the current induced in the coil and the magnetic field it produces, to justify your response. How does the magnitude of the force depend on the resistance of the galvanometer?

Explain how magnetic flux can be zero when the magnetic field is not zero.

Is a voltage induced in the coil in [link] when it is stretched? If so, state why and give the direction of the induced current.

The first part of the figure shows a circular coil of wire held in a magnetic field. The magnetic field points into the paper. The coil is held using both the hands to stretch it. The second part of the figure shows the same circular coil of wire stretched in the magnetic field.
A circular coil of wire is stretched in a magnetic field.

Questions & Answers

what is defense mechanism
Chinaza Reply
what is defense mechanisms
Chinaza
I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Concepts of physics. OpenStax CNX. Aug 25, 2015 Download for free at https://legacy.cnx.org/content/col11738/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Concepts of physics' conversation and receive update notifications?

Ask