<< Chapter < Page Chapter >> Page >
Aneroid gauge measures pressure using a bellows and spring arrangement connected to the pointer that points to a calibrated scale.
This aneroid gauge utilizes flexible bellows connected to a mechanical indicator to measure pressure.

An entire class of gauges uses the property that pressure due to the weight of a fluid is given by P = hρg . size 12{P=hρg "." } {} Consider the U-shaped tube shown in [link] , for example. This simple tube is called a manometer . In [link] (a), both sides of the tube are open to the atmosphere. Atmospheric pressure therefore pushes down on each side equally so its effect cancels. If the fluid is deeper on one side, there is a greater pressure on the deeper side, and the fluid flows away from that side until the depths are equal.

Let us examine how a manometer is used to measure pressure. Suppose one side of the U-tube is connected to some source of pressure P abs size 12{P rSub { size 8{"abs"} } } {} such as the toy balloon in [link] (b) or the vacuum-packed peanut jar shown in [link] (c). Pressure is transmitted undiminished to the manometer, and the fluid levels are no longer equal. In [link] (b), P abs size 12{P rSub { size 8{"abs"} } } {} is greater than atmospheric pressure, whereas in [link] (c), P abs size 12{P rSub { size 8{"abs"} } } {} is less than atmospheric pressure. In both cases, P abs size 12{P rSub { size 8{"abs"} } } {} differs from atmospheric pressure by an amount hρg size 12{hρg} {} , where ρ size 12{ρ} {} is the density of the fluid in the manometer. In [link] (b), P abs size 12{P rSub { size 8{"abs"} } } {} can support a column of fluid of height h size 12{h} {} , and so it must exert a pressure hρg size 12{hρg} {} greater than atmospheric pressure (the gauge pressure P g size 12{P rSub { size 8{g} } } {} is positive). In [link] (c), atmospheric pressure can support a column of fluid of height h size 12{h} {} , and so P abs size 12{P rSub { size 8{"abs"} } } {} is less than atmospheric pressure by an amount hρg size 12{hρg} {} (the gauge pressure P g size 12{P rSub { size 8{g} } } {} is negative). A manometer with one side open to the atmosphere is an ideal device for measuring gauge pressures. The gauge pressure is P g = hρg size 12{P rSub { size 8{g} } =hρg} {} and is found by measuring h size 12{h} {} .

Open-tube manometers have U-shaped tubes and one end is always open. When open to atmosphere, fluid at both ends will be the same, as in the first figure. When pressure at one end is greater, the fluid level will go down on that end, as in the second figure. If the pressure at one end is less, then the height of the fluid column on that side will increase, as in the third figure.
An open-tube manometer has one side open to the atmosphere. (a) Fluid depth must be the same on both sides, or the pressure each side exerts at the bottom will be unequal and there will be flow from the deeper side. (b) A positive gauge pressure P g = hρg size 12{P rSub { size 8{g} } =hρg} {} transmitted to one side of the manometer can support a column of fluid of height h size 12{h} {} . (c) Similarly, atmospheric pressure is greater than a negative gauge pressure P g size 12{P rSub { size 8{g} } } {} by an amount hρg size 12{hρg} {} . The jar’s rigidity prevents atmospheric pressure from being transmitted to the peanuts.

Mercury manometers are often used to measure arterial blood pressure. An inflatable cuff is placed on the upper arm as shown in [link] . By squeezing the bulb, the person making the measurement exerts pressure, which is transmitted undiminished to both the main artery in the arm and the manometer. When this applied pressure exceeds blood pressure, blood flow below the cuff is cut off. The person making the measurement then slowly lowers the applied pressure and listens for blood flow to resume. Blood pressure pulsates because of the pumping action of the heart, reaching a maximum, called systolic pressure    , and a minimum, called diastolic pressure    , with each heartbeat. Systolic pressure is measured by noting the value of h size 12{h} {} when blood flow first begins as cuff pressure is lowered. Diastolic pressure is measured by noting h size 12{h} {} when blood flows without interruption. The typical blood pressure of a young adult raises the mercury to a height of 120 mm at systolic and 80 mm at diastolic. This is commonly quoted as 120 over 80, or 120/80. The first pressure is representative of the maximum output of the heart; the second is due to the elasticity of the arteries in maintaining the pressure between beats. The density of the mercury fluid in the manometer is 13.6 times greater than water, so the height of the fluid will be 1/13.6 of that in a water manometer. This reduced height can make measurements difficult, so mercury manometers are used to measure larger pressures, such as blood pressure. The density of mercury is such that 1.0 mm Hg = 133 Pa .

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics of the world around us. OpenStax CNX. May 21, 2015 Download for free at http://legacy.cnx.org/content/col11797/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics of the world around us' conversation and receive update notifications?

Ask