<< Chapter < Page Chapter >> Page >
  • State the second condition that is necessary to achieve equilibrium.
  • Explain torque and the factors on which it depends.
  • Describe the role of torque in rotational mechanics.

Torque

The second condition necessary to achieve equilibrium involves avoiding accelerated rotation (maintaining a constant angular velocity. A rotating body or system can be in equilibrium if its rate of rotation is constant and remains unchanged by the forces acting on it. To understand what factors affect rotation, let us think about what happens when you open an ordinary door by rotating it on its hinges.

Several familiar factors determine how effective you are in opening the door. See [link] . First of all, the larger the force, the more effective it is in opening the door—obviously, the harder you push, the more rapidly the door opens. Also, the point at which you push is crucial. If you apply your force too close to the hinges, the door will open slowly, if at all. Most people have been embarrassed by making this mistake and bumping up against a door when it did not open as quickly as expected. Finally, the direction in which you push is also important. The most effective direction is perpendicular to the door—we push in this direction almost instinctively.

In the figure, six top views of a door are shown. In the first figure, a force vector is shown in the North West direction. The perpendicular distance of the force from the point of rotation is r. In the second figure, a force is applied in the opposite direction at the same distance from the hinges. In the third figure, a smaller force in applied at the same point. In the next figure, a horizontal force is applied at the same point. In this case, the perpendicular distance from the hinges is shown as r sin theta. In the next figure, force is applied at a distance near the hinges. In the final figure, the force is shown along the direction of hinges toward the handle of the door.
Torque is the turning or twisting effectiveness of a force, illustrated here for door rotation on its hinges (as viewed from overhead). Torque has both magnitude and direction. (a) Counterclockwise torque is produced by this force, which means that the door will rotate in a counterclockwise due to F size 12{F} {} . Note that r size 12{r} sub{} is the perpendicular distance of the pivot from the line of action of the force. (b) A smaller counterclockwise torque is produced by a smaller force F′ size 12{F} {} acting at the same distance from the hinges (the pivot point). (c) The same force as in (a) produces a smaller counterclockwise torque when applied at a smaller distance from the hinges. (d) The same force as in (a), but acting in the opposite direction, produces a clockwise torque. (e) A smaller counterclockwise torque is produced by the same magnitude force acting at the same point but in a different direction. Here, θ size 12{θ} {} is less than 90º . (f) Torque is zero here since the force just pulls on the hinges, producing no rotation. In this case, θ = size 12{θ=0°} {} .

The magnitude, direction, and point of application of the force are incorporated into the definition of the physical quantity called torque. Torque is the rotational equivalent of a force. It is a measure of the effectiveness of a force in changing or accelerating a rotation (changing the angular velocity over a period of time). In equation form, the magnitude of torque is defined to be

τ = rF sin θ size 12{τ= ital "rF""sin"θ} {}

where τ (the Greek letter tau) is the symbol for torque, r is the distance from the pivot point to the point where the force is applied, F is the magnitude of the force, and θ size 12{θ} {} is the angle between the force and the vector directed from the point of application to the pivot point, as seen in [link] and [link] . An alternative expression for torque is given in terms of the perpendicular lever arm     r size 12{r rSub { size 8{ ortho } } } {} as shown in [link] and [link] , which is defined as

Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Introduction to applied math and physics. OpenStax CNX. Oct 04, 2012 Download for free at http://cnx.org/content/col11426/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Introduction to applied math and physics' conversation and receive update notifications?

Ask