<< Chapter < Page Chapter >> Page >

Given that we have multithreaded capabilities and multiprocessors, we must still convince the threads to work together to accomplish some overall goal. Often we need some ways to coordinate and cooperate between the threads. There are several important techniques that are used while the program is running with multiple threads, including:

  • Fork-join (or create-join) programming
  • Synchronization using a critical section with a lock, semaphore, or mutex
  • Barriers

Each of these techniques has an overhead associated with it. Because these overheads are necessary to go parallel, we must make sure that we have sufficient work to make the benefit of parallel operation worth the cost.

Fork-join programming

This approach is the simplest method of coordinating your threads. As in the earlier examples in this chapter, a master thread sets up some global data structures that describe the tasks each thread is to perform and then use the pthread_create( ) function to activate the proper number of threads. Each thread checks the global data structure using its thread-id as an index to find its task. The thread then performs the task and completes. The master thread waits at a pthread_join( ) point, and when a thread has completed, it updates the global data structure and creates a new thread. These steps are repeated for each major iteration (such as a time-step) for the duration of the program:


for(ts=0;ts<10000;ts++) { /* Time Step Loop */ /* Setup tasks */for (ith=0;ith<NUM_THREADS;ith++) pthread_create(..,work_routine,..) for (ith=0;ith<NUM_THREADS;ith++) pthread_join(...) }work_routine() { /* Perform Task */return; }

The shortcoming of this approach is the overhead cost associated with creating and destroying an operating system thread for a potentially very short task.

The other approach is to have the threads created at the beginning of the program and to have them communicate amongst themselves throughout the duration of the application. To do this, they use such techniques as critical sections or barriers.

Synchronization

Synchronization is needed when there is a particular operation to a shared variable that can only be performed by one processor at a time. For example, in previous SpinFunc( ) examples, consider the line:

globvar++;

In assembly language, this takes at least three instructions:


LOAD R1,globvar ADD R1,1STORE R1,globvar

What if globvar contained 0, Thread 1 was running, and, at the precise moment it completed the LOAD into Register R1 and before it had completed the ADD or STORE instructions, the operating system interrupted the thread and switched to Thread 2? Thread 2 catches up and executes all three instructions using its registers: loading 0, adding 1 and storing the 1 back into globvar . Now Thread 2 goes to sleep and Thread 1 is restarted at the ADD instruction. Register R1 for Thread 1 contains the previously loaded value of 0; Thread 1 adds 1 and then stores 1 into globvar . What is wrong with this picture? We meant to use this code to count the number of threads that have passed this point. Two threads passed the point, but because of a bad case of bad timing, our variable indicates only that one thread passed. This is because the increment of a variable in memory is not atomic . That is, halfway through the increment, something else can happen.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, High performance computing. OpenStax CNX. Aug 25, 2010 Download for free at http://cnx.org/content/col11136/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'High performance computing' conversation and receive update notifications?

Ask