<< Chapter < Page Chapter >> Page >
  • Describe a force field and calculate the strength of an electric field due to a point charge.
  • Calculate the force exerted on a test charge by an electric field.
  • Explain the relationship between electrical force (F) on a test charge and electrical field strength (E).

Contact forces, such as between a baseball and a bat, are explained on the small scale by the interaction of the charges in atoms and molecules in close proximity. They interact through forces that include the Coulomb force    . Action at a distance is a force between objects that are not close enough for their atoms to “touch.” That is, they are separated by more than a few atomic diameters.

For example, a charged rubber comb attracts neutral bits of paper from a distance via the Coulomb force. It is very useful to think of an object being surrounded in space by a force field    . The force field carries the force to another object (called a test object) some distance away.

Concept of a field

A field is a way of conceptualizing and mapping the force that surrounds any object and acts on another object at a distance without apparent physical connection. For example, the gravitational field surrounding the earth (and all other masses) represents the gravitational force that would be experienced if another mass were placed at a given point within the field.

In the same way, the Coulomb force field surrounding any charge extends throughout space. Using Coulomb’s law, F = k | q 1 q 2 | / r 2 size 12{F= { ital "kq" rSub { size 8{1} } q rSub { size 8{2} } } slash {r rSup { size 8{2} } } } {} , its magnitude is given by the equation F = k | qQ | / r 2 size 12{F= { ital "kqQ"} slash {r rSup { size 8{2} } } } {} , for a point charge    (a particle having a charge Q size 12{Q} {} ) acting on a test charge     q size 12{q} {} at a distance r size 12{r} {} (see [link] ). Both the magnitude and direction of the Coulomb force field depend on Q size 12{Q} {} and the test charge q size 12{q} {} .

In part a, two charges Q and q one are placed at a distance r. The force vector F one on charge q one is shown by an arrow pointing toward right away from Q. In part b, two charges Q and q two are placed at a distance r. The force vector F two on charge q two is shown by an arrow pointing toward left toward Q.
The Coulomb force field due to a positive charge Q size 12{Q} {} is shown acting on two different charges. Both charges are the same distance from Q size 12{Q} {} . (a) Since q 1 size 12{q rSub { size 8{1} } } {} is positive, the force F 1 size 12{F rSub { size 8{1} } } {} acting on it is repulsive. (b) The charge q 2 size 12{q rSub { size 8{2} } } {} is negative and greater in magnitude than q 1 size 12{q rSub { size 8{1} } } {} , and so the force F 2 size 12{F rSub { size 8{2} } } {} acting on it is attractive and stronger than F 1 size 12{F rSub { size 8{1} } } {} . The Coulomb force field is thus not unique at any point in space, because it depends on the test charges q 1 size 12{q rSub { size 8{1} } } {} and q 2 size 12{q rSub { size 8{2} } } {} as well as the charge Q size 12{Q} {} .

To simplify things, we would prefer to have a field that depends only on Q size 12{Q} {} and not on the test charge q size 12{q} {} . The electric field is defined in such a manner that it represents only the charge creating it and is unique at every point in space. Specifically, the electric field E size 12{E} {} is defined to be the ratio of the Coulomb force to the test charge:

E = F q , size 12{E= { {F} over {q,} } } {}

where F size 12{F} {} is the electrostatic force (or Coulomb force) exerted on a positive test charge q size 12{q} {} . It is understood that E size 12{E} {} is in the same direction as F size 12{F} {} . It is also assumed that q size 12{q} {} is so small that it does not alter the charge distribution creating the electric field. The units of electric field are newtons per coulomb (N/C). If the electric field is known, then the electrostatic force on any charge q size 12{q} {} is simply obtained by multiplying charge times electric field, or F = q E size 12{F=qE} {} . Consider the electric field due to a point charge Q size 12{Q} {} . According to Coulomb’s law, the force it exerts on a test charge q size 12{q} {} is F = k | qQ | / r 2 size 12{F= { ital "kqQ"} slash {r rSup { size 8{2} } } } {} . Thus the magnitude of the electric field, E size 12{E} {} , for a point charge is

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Concepts of physics with linear momentum. OpenStax CNX. Aug 11, 2016 Download for free at http://legacy.cnx.org/content/col11960/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Concepts of physics with linear momentum' conversation and receive update notifications?

Ask