<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Describe the features that characterized the earliest animals and when they appeared on earth
  • Explain the significance of the Cambrian period for animal evolution and the changes in animal diversity that took place during that time
  • Describe some of the unresolved questions surrounding the Cambrian explosion
  • Discuss the implications of mass animal extinctions that have occurred in evolutionary history

Many questions regarding the origins and evolutionary history of the animal kingdom continue to be researched and debated, as new fossil and molecular evidence change prevailing theories. Some of these questions include the following: How long have animals existed on Earth? What were the earliest members of the animal kingdom, and what organism was their common ancestor? While animal diversity increased during the Cambrian period of the Paleozoic era, 530 million years ago, modern fossil evidence suggests that primitive animal species existed much earlier.

Pre-cambrian animal life

The time before the Cambrian period is known as the Ediacaran period    (from about 635 million years ago to 543 million years ago), the final period of the late Proterozoic Neoproterozoic Era ( [link] ). It is believed that early animal life, termed Ediacaran biota, evolved from protists at this time. Some protist species called choanoflagellates closely resemble the choanocyte cells in the simplest animals, sponges. In addition to their morphological similarity, molecular analyses have revealed similar sequence homologies in their DNA.

Table A describes eras in earth’s history. The earth’s history is divided into four eons, the Pre-Archean, Archaea, Proteozoic, Phanerozoic. The oldest eon, the Pre-Archean, spans the beginning of earth’s history to about 3.8 billion years ago. The Archean eon spans 2.5 to 3.8 billion years ago, and the Proterozoic spans 570 million to 2.5 billion years ago. The Pharenozoic eon, from 570 million years ago to present time, is sub-divided into the Paleozoic, Mesozoic and Cenozoic eras. The Paleozoic era, from 240 to 570 million years ago, is further divided into seven periods: the Cambrian from 500 to 570 million years ago, the Ordovician from 435 to 500 million years ago, the Silurian from 410 to 435 million years ago, the Devonian from 360 to 410 million years ago, the Missisippian from 330 to 360 million years ago, the Pennsylvanian from 290 to 330 million years ago, and the Permian from 240 to 290 million years ago. The Mesozoic era, from 66 to 240 million years ago, is divided into three periods, the Triassic from 205 to 240 million years ago, the Jurassic from 138 to 205 million years ago, and the Cretaceous, from 66 to 138 million years ago. The Cenozoic era, from 66 million years ago to modern times, is divided into two eras, the Tertiary and the Quaternary. The tertiary period spans 66 to 1.6 million years ago. The quaternary period spans 1.6 million years ago to modern times. Illustration B shows geological periods in a spiral starting with the beginning of earth’s history  at the bottom and ending with modern times at the top. The diversity and complexity of life increases toward the top of the spiral.
(a) Earth’s history is divided into eons, eras, and periods. Note that the Ediacaran period starts in the Proterozoic eon and ends in the Cambrian period of the Phanerozoic eon. (b) Stages on the geological time scale are represented as a spiral. (credit: modification of work by USGS)

The earliest life comprising Ediacaran biota was long believed to include only tiny, sessile, soft-bodied sea creatures. However, recently there has been increasing scientific evidence suggesting that more varied and complex animal species lived during this time, and possibly even before the Ediacaran period.

Fossils believed to represent the oldest animals with hard body parts were recently discovered in South Australia. These sponge-like fossils, named Coronacollina acula , date back as far as 560 million years, and are believed to show the existence of hard body parts and spicules that extended 20–40 cm from the main body (estimated about 5 cm long). Other fossils from the Ediacaran period are shown in [link] ab .

Part a shows a fossil that resembles a wheel, with spokes radiating out from the center, imprinted on a rock. Part b shows a fossil that resembles a teardrop shaped leaf, with grooves radiating out from a central rib.
Fossils of (a) Cyclomedusa and (b) Dickinsonia date to 650 million years ago, during the Ediacaran period. (credit: modification of work by “Smith609”/Wikimedia Commons)

Another recent fossil discovery may represent the earliest animal species ever found. While the validity of this claim is still under investigation, these primitive fossils appear to be small, one-centimeter long, sponge-like creatures. These fossils from South Australia date back 650 million years, actually placing the putative animal before the great ice age extinction event that marked the transition between the Cryogenian period    and the Ediacaran period. Until this discovery, most scientists believed that there was no animal life prior to the Ediacaran period. Many scientists now believe that animals may in fact have evolved during the Cryogenian period.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, 101-nya-05 - general biology i. OpenStax CNX. Jul 22, 2015 Download for free at http://legacy.cnx.org/content/col11849/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the '101-nya-05 - general biology i' conversation and receive update notifications?

Ask